-
1
-
-
84913417125
-
-
10.1070/PU1982v025n04ABEH004537
-
K. I. Kugel' and D. I. Khomskii, Sov. Phys. Usp. 25, 231 (1982). 10.1070/PU1982v025n04ABEH004537
-
(1982)
Sov. Phys. Usp.
, vol.25
, pp. 231
-
-
Kugel, K.I.1
Khomskii, D.I.2
-
2
-
-
32644484096
-
-
10.1103/PhysRevLett.96.036401
-
M. H. Sage, G. R. Blake, G. J. Nieuwenhuys, and T. T. M. Palstra, Phys. Rev. Lett. 96, 036401 (2006). 10.1103/PhysRevLett.96.036401
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 036401
-
-
Sage, M.H.1
Blake, G.R.2
Nieuwenhuys, G.J.3
Palstra, T.T.M.4
-
3
-
-
36248999308
-
-
10.1103/PhysRevLett.99.217201
-
S. Miyasaka, T. Yasue, J. Fujioka, Y. Yamasaki, Y. Okimoto, R. Kumai, T. Arima, and Y. Tokura, Phys. Rev. Lett. 99, 217201 (2007). 10.1103/PhysRevLett. 99.217201
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 217201
-
-
Miyasaka, S.1
Yasue, T.2
Fujioka, J.3
Yamasaki, Y.4
Okimoto, Y.5
Kumai, R.6
Arima, T.7
Tokura, Y.8
-
4
-
-
34848872533
-
-
10.1103/PhysRevLett.99.136403
-
H. D. Zhou, B. S. Conner, L. Balicas, and C. R. Wiebe, Phys. Rev. Lett. 99, 136403 (2007). 10.1103/PhysRevLett.99.136403
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 136403
-
-
Zhou, H.D.1
Conner, B.S.2
Balicas, L.3
Wiebe, C.R.4
-
5
-
-
33846659732
-
-
10.1021/ja0664032
-
A. A. Belik, S. Iikubo, T. Yokosawa, K. Kodama, N. Igawa, S. Shamoto, M. Azuma, M. Takano, K. Kimoto, Y. Matsui, and E. Takayama-Muromachi, J. Am. Chem. Soc. 129, 971 (2007). 10.1021/ja0664032
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 971
-
-
Belik, A.A.1
Iikubo, S.2
Yokosawa, T.3
Kodama, K.4
Igawa, N.5
Shamoto, S.6
Azuma, M.7
Takano, M.8
Kimoto, K.9
Matsui, Y.10
Takayama-Muromachi, E.11
-
8
-
-
0033601085
-
-
10.1021/ja991566u
-
T. A. Kodenkandath, J. N. Lalena, W. L. Zhou, E. E. Carpenter, C. Sangregorio, A. U. Falster, W. B. Simmons, Jr., C. J. O'Connor, and J. B. Wiley, J. Am. Chem. Soc. 121, 10743 (1999). 10.1021/ja991566u
-
(1999)
J. Am. Chem. Soc.
, vol.121
, pp. 10743
-
-
Kodenkandath, T.A.1
Lalena, J.N.2
Zhou, W.L.3
Carpenter, E.E.4
Sangregorio, C.5
Falster, A.U.6
Simmons, Jr.W.B.7
O'Connor, C.J.8
Wiley, J.B.9
-
9
-
-
0035847505
-
-
10.1021/ic0008215
-
T. Kodenkandath, A. Kumbhar, W. Zhou, and J. Wiley, Inorg. Chem. 40, 710 (2001). 10.1021/ic0008215
-
(2001)
Inorg. Chem.
, vol.40
, pp. 710
-
-
Kodenkandath, T.1
Kumbhar, A.2
Zhou, W.3
Wiley, J.4
-
10
-
-
21744457302
-
-
10.1143/JPSJ.74.1702
-
H. Kageyama, T. Kitano, N. Oba, M. Nishi, S. Nagai, K. Hirota, L. Viciu, J. B. Wiley, J. Yasuda, Y. Baba, Y. Ajiro, and K. Yoshimura, J. Phys. Soc. Jpn. 74, 1702 (2005). 10.1143/JPSJ.74.1702
-
(2005)
J. Phys. Soc. Jpn.
, vol.74
, pp. 1702
-
-
Kageyama, H.1
Kitano, T.2
Oba, N.3
Nishi, M.4
Nagai, S.5
Hirota, K.6
Viciu, L.7
Wiley, J.B.8
Yasuda, J.9
Baba, Y.10
Ajiro, Y.11
Yoshimura, K.12
-
11
-
-
29144513726
-
-
10.1143/JPSJ.74.3155
-
H. Kageyama, J. Yasuda, T. Kitano, K. Totsuka, Y. Narumi, M. Hagiwara, K. Kindo, Y. Baba, N. Oba, Y. Ajiro, and K. Yoshimura, J. Phys. Soc. Jpn. 74, 3155 (2005). 10.1143/JPSJ.74.3155
-
(2005)
J. Phys. Soc. Jpn.
, vol.74
, pp. 3155
-
-
Kageyama, H.1
Yasuda, J.2
Kitano, T.3
Totsuka, K.4
Narumi, Y.5
Hagiwara, M.6
Kindo, K.7
Baba, Y.8
Oba, N.9
Ajiro, Y.10
Yoshimura, K.11
-
13
-
-
35348907846
-
-
10.1143/JPSJ.76.104703
-
M. Yoshida, N. Ogata, M. Takigawa, J. Yamaura, M. Ichihara, T. Kitano, H. Kageyama, Y. Ajiro, and K. Yoshimura, J. Phys. Soc. Jpn. 76, 104703 (2007). 10.1143/JPSJ.76.104703
-
(2007)
J. Phys. Soc. Jpn.
, vol.76
, pp. 104703
-
-
Yoshida, M.1
Ogata, N.2
Takigawa, M.3
Yamaura, J.4
Ichihara, M.5
Kitano, T.6
Kageyama, H.7
Ajiro, Y.8
Yoshimura, K.9
-
14
-
-
33847321679
-
-
10.1016/j.jmmm.2006.10.358
-
N. Oba, H. Kageyama, T. Saito, M. Azuma, W. Paulus, T. Kitano, Y. Ajiro, and K. Yoshimura, J. Magn. Magn. Mater. 310, 1337 (2007). 10.1016/j.jmmm.2006. 10.358
-
(2007)
J. Magn. Magn. Mater.
, vol.310
, pp. 1337
-
-
Oba, N.1
Kageyama, H.2
Saito, T.3
Azuma, M.4
Paulus, W.5
Kitano, T.6
Ajiro, Y.7
Yoshimura, K.8
-
15
-
-
37549010790
-
-
Basically, one can overcome multiple scattering by using the precession technique, and high-resolution electron microscopy provides additional structural information on the local scale. In general, the structure solution and refinement from electron diffraction and electron microscopy data are possible [see 10.1107/S0108767307060084], but they are still far from being routine procedures in modern structure analysis.
-
Basically, one can overcome multiple scattering by using the precession technique, and high-resolution electron microscopy provides additional structural information on the local scale. In general, the structure solution and refinement from electron diffraction and electron microscopy data are possible [see X. D. Zou and S. Hovmöller, Acta Crystallogr., Sect. A: Found. Crystallogr. 64, 149 (2008) 10.1107/S0108767307060084], but they are still far from being routine procedures in modern structure analysis.
-
(2008)
Acta Crystallogr., Sect. A: Found. Crystallogr.
, vol.64
, pp. 149
-
-
Zou, X.D.1
Hovmöller, S.2
-
16
-
-
34548844768
-
-
10.1143/JPSJ.76.093706
-
A. Kitada, Z. Hiroi, Y. Tsujimoto, T. Kitano, H. Kageyama, Y. Ajiro, and K. Yoshimura, J. Phys. Soc. Jpn. 76, 093706 (2007). 10.1143/JPSJ.76.093706
-
(2007)
J. Phys. Soc. Jpn.
, vol.76
, pp. 093706
-
-
Kitada, A.1
Hiroi, Z.2
Tsujimoto, Y.3
Kitano, T.4
Kageyama, H.5
Ajiro, Y.6
Yoshimura, K.7
-
18
-
-
0037300083
-
-
10.1103/PhysRevB.67.054104
-
H. Rosner and W. E. Pickett, Phys. Rev. B 67, 054104 (2003). 10.1103/PhysRevB.67.054104
-
(2003)
Phys. Rev. B
, vol.67
, pp. 054104
-
-
Rosner, H.1
Pickett, W.E.2
-
20
-
-
50849094894
-
-
10.1103/PhysRevLett.101.096405
-
I. Leonov, N. Binggeli, D. Korotin, V. I. Anisimov, N. Stojić, and D. Vollhardt, Phys. Rev. Lett. 101, 096405 (2008). 10.1103/PhysRevLett.101. 096405
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 096405
-
-
Leonov, I.1
Binggeli, N.2
Korotin, D.3
Anisimov, V.I.4
Stojić, N.5
Vollhardt, D.6
-
21
-
-
37249010156
-
-
10.1103/PhysRevLett.99.247210
-
D. Kasinathan, K. Koepernik, U. Nitzsche, and H. Rosner, Phys. Rev. Lett. 99, 247210 (2007). 10.1103/PhysRevLett.99.247210
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 247210
-
-
Kasinathan, D.1
Koepernik, K.2
Nitzsche, U.3
Rosner, H.4
-
23
-
-
36448970146
-
-
10.1103/PhysRevLett.99.227201
-
S. Picozzi, K. Yamauchi, B. Sanyal, I. A. Sergienko, and E. Dagotto, Phys. Rev. Lett. 99, 227201 (2007). 10.1103/PhysRevLett.99.227201
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 227201
-
-
Picozzi, S.1
Yamauchi, K.2
Sanyal, B.3
Sergienko, I.A.4
Dagotto, E.5
-
24
-
-
36048943284
-
-
10.1103/PhysRevLett.99.197601
-
J. Koo, Phys. Rev. Lett. 99, 197601 (2007). 10.1103/PhysRevLett.99.197601
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 197601
-
-
Koo, J.1
-
26
-
-
33645898818
-
-
10.1103/PhysRevB.45.13244
-
J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992). 10.1103/PhysRevB.45.13244
-
(1992)
Phys. Rev. B
, vol.45
, pp. 13244
-
-
Perdew, J.P.1
Wang, Y.2
-
28
-
-
67650027210
-
-
Note
-
We should emphasize that there are several extensively studied-layered Cl-containing copper oxides (e.g., Sr2 CuO2 Cl2). These compounds can be considered as oxychlorides from chemical point of view, but their crystal and electronic structures are similar to that of conventional Cu+2 -containing oxides because Cu atoms are situated in CuO4 plaquettes, while Cl atoms form long axial Cu-Cl bonds. As a result, the Cl orbitals do not overlap with the half-filled Cu d x2 - y2 orbital and bear little influence on the physics. Electronic structures of "true" copper oxyhalides (with halogen atoms involved in the copper plaquettes) remain basically unexplored. To the best of our knowledge, band-structure calculations are reported for five compounds only: Cu2 Te2 O5 X2 (X=Cl,Br) (Ref.), Cu4 Te5 O12 Cl4 (Ref.), and-quite recently- CuCl2 along with CuCl2 2 H2 O (Ref.). The on-site Coulomb repulsion parameters are discussed for the latter case only, and the values of Ueff =4 eV, Ud =6.0-8.5 eV are used.
-
-
-
-
29
-
-
67650010128
-
-
arXiv:0905.4038
-
M. Schmitt, O. Janson, M. Schmidt, S. Hoffmann, W. Schnelle, S.-L. Drechsler, and H. Rosner, arXiv:0905.4038, Phys. Rev. B (to be published).
-
Phys. Rev. B
-
-
Schmitt, M.1
Janson, O.2
Schmidt, M.3
Hoffmann, S.4
Schnelle, W.5
Drechsler, S.-L.6
Rosner, H.7
-
30
-
-
33845274748
-
-
10.1103/PhysRevB.74.174435
-
M. D. Johannes, J. Richter, S.-L. Drechsler, and H. Rosner, Phys. Rev. B 74, 174435 (2006). 10.1103/PhysRevB.74.174435
-
(2006)
Phys. Rev. B
, vol.74
, pp. 174435
-
-
Johannes, M.D.1
Richter, J.2
Drechsler, S.-L.3
Rosner, H.4
-
31
-
-
34648814025
-
-
10.1103/PhysRevB.76.115119
-
O. Janson, R. O. Kuzian, S.-L. Drechsler, and H. Rosner, Phys. Rev. B 76, 115119 (2007). 10.1103/PhysRevB.76.115119
-
(2007)
Phys. Rev. B
, vol.76
, pp. 115119
-
-
Janson, O.1
Kuzian, R.O.2
Drechsler, S.-L.3
Rosner, H.4
-
32
-
-
17544377532
-
-
10.1209/epl/i2004-10484-x
-
M. Enderle, C. Mukherjee, B. Fåk, R. K. Kremer, J.-M. Broto, H. Rosner, S.-L. Drechsler, J. Richter, J. Malek, A. Prokofiev, W. Assmus, S. Pujol, J.-L. Raggazoni, H. Rakoto, M. Rheinstädter, and H. M. Rønnow, Europhys. Lett. 70, 237 (2005). 10.1209/epl/i2004-10484-x
-
(2005)
Europhys. Lett.
, vol.70
, pp. 237
-
-
Enderle, M.1
Mukherjee, C.2
Fåk, B.3
Kremer, R.K.4
Broto, J.-M.5
Rosner, H.6
Drechsler, S.-L.7
Richter, J.8
Malek, J.9
Prokofiev, A.10
Assmus, W.11
Pujol, S.12
Raggazoni, J.-L.13
Rakoto, H.14
Rheinstädter, M.15
Rønnow, H.M.16
-
34
-
-
84869338233
-
-
One can get a feeling of these values by considering the LSDA+U calculations for conventional cuprates with CuO4 plaquettes. Depending on the computational method and on the specific compound, the Ud values in the range 6.5-8 eV are used for the evaluation of the exchange couplings (see, e.g., Refs.). The 3p orbitals of chlorine are spatially more extended as compared to the 2p orbitals of oxygen. Therefore, one may expect more effective screening (hence, smaller on-site repulsion) in copper oxychlorides. Based on these considerations, we employ the "cupratelike" Ud of 7.5 eV along with the smaller Ud values in our LSDA+U calculations.
-
One can get a feeling of these values by considering the LSDA+U calculations for conventional cuprates with CuO4 plaquettes. Depending on the computational method and on the specific compound, the Ud values in the range 6.5-8 eV are used for the evaluation of the exchange couplings (see, e.g., Refs.). The 3p orbitals of chlorine are spatially more extended as compared to the 2p orbitals of oxygen. Therefore, one may expect more effective screening (hence, smaller on-site repulsion) in copper oxychlorides. Based on these considerations, we employ the "cupratelike" Ud of 7.5 eV along with the smaller Ud values in our LSDA+U calculations.
-
-
-
-
35
-
-
0042028334
-
-
10.1103/PhysRevB.67.245110
-
R. Valenti, T. Saha-Dasgupta, C. Gros, and H. Rosner, Phys. Rev. B 67, 245110 (2003). 10.1103/PhysRevB.67.245110
-
(2003)
Phys. Rev. B
, vol.67
, pp. 245110
-
-
Valenti, R.1
Saha-Dasgupta, T.2
Gros, C.3
Rosner, H.4
-
36
-
-
33846367444
-
-
10.1103/PhysRevB.75.024404
-
B. Rahaman, H. O. Jeschke, R. Valenti, and T. Saha-Dasgupta, Phys. Rev. B 75, 024404 (2007). 10.1103/PhysRevB.75.024404
-
(2007)
Phys. Rev. B
, vol.75
, pp. 024404
-
-
Rahaman, B.1
Jeschke, H.O.2
Valenti, R.3
Saha-Dasgupta, T.4
-
37
-
-
37749029373
-
-
10.1103/PhysRevB.77.035106
-
W. G. Schmidt, M. Albrecht, S. Wippermann, S. Blankenburg, E. Rauls, F. Fuchs, C. Rödl, J. Furthmüller, and A. Hermann, Phys. Rev. B 77, 035106 (2008). 10.1103/PhysRevB.77.035106
-
(2008)
Phys. Rev. B
, vol.77
, pp. 035106
-
-
Schmidt, W.G.1
Albrecht, M.2
Wippermann, S.3
Blankenburg, S.4
Rauls, E.5
Fuchs, F.6
Rödl, C.7
Furthmüller, J.8
Hermann, A.9
-
38
-
-
0037285045
-
-
10.1103/PhysRevB.67.014416
-
H. Rosner, R. R. P. Singh, W. H. Zheng, J. Oitmaa, and W. E. Pickett, Phys. Rev. B 67, 014416 (2003). 10.1103/PhysRevB.67.014416
-
(2003)
Phys. Rev. B
, vol.67
, pp. 014416
-
-
Rosner, H.1
Singh, R.R.P.2
Zheng, W.H.3
Oitmaa, J.4
Pickett, W.E.5
-
41
-
-
67650038801
-
-
The stability of the perovskite structure can be evaluated by calculating a simple geometrical tolerance factor (tf). For the ideal (cubic) perovskite structure of the AB O3 compound, tf = (rA + rO) /2 (rB + rO) amounts to 1. In case of the [LaNb2 O7] block, tf sqar;0.94, implying that the La atom is a bit too small for the framework of the NbO6 octahedra. Then the small size of the La atom may be tolerated by the tiltings of the NbO6 octahedra since such tiltings lead to the reduction in La-O distances (see Ref. for details).
-
The stability of the perovskite structure can be evaluated by calculating a simple geometrical tolerance factor (tf). For the ideal (cubic) perovskite structure of the AB O3 compound, tf = (rA + rO) /2 (rB + rO) amounts to 1. In case of the [LaNb2 O7] block, tf sqar;mplying that the La atom is a bit too small for the framework of the NbO6 octahedra. Then the small size of the La atom may be tolerated by the tiltings of the NbO6 octahedra since such tiltings lead to the reduction in La-O distances (see Ref. for details).
-
-
-
-
42
-
-
0001411585
-
-
10.1103/PhysRevLett.79.1746
-
W. E. Pickett, Phys. Rev. Lett. 79, 1746 (1997). 10.1103/PhysRevLett.79. 1746
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 1746
-
-
Pickett, W.E.1
-
43
-
-
18344375339
-
-
10.1103/PhysRevLett.83.1387
-
M. A. Korotin, I. S. Elfimov, V. I. Anisimov, M. Troyer, and D. I. Khomskii, Phys. Rev. Lett. 83, 1387 (1999). 10.1103/PhysRevLett.83.1387
-
(1999)
Phys. Rev. Lett.
, vol.83
, pp. 1387
-
-
Korotin, M.A.1
Elfimov, I.S.2
Anisimov, V.I.3
Troyer, M.4
Khomskii, D.I.5
-
44
-
-
33847330321
-
-
10.1143/JPSJ.75.113601
-
N. Oba, H. Kageyama, T. Kitano, J. Yasuda, Y. Baba, M. Nishi, K. Hirota, Y. Narumi, M. Hagiwara, K. Kindo, T. Saito, T. Ajiro, and K. Yoshimura, J. Phys. Soc. Jpn. 75, 113601 (2006). 10.1143/JPSJ.75.113601
-
(2006)
J. Phys. Soc. Jpn.
, vol.75
, pp. 113601
-
-
Oba, N.1
Kageyama, H.2
Kitano, T.3
Yasuda, J.4
Baba, Y.5
Nishi, M.6
Hirota, K.7
Narumi, Y.8
Hagiwara, M.9
Kindo, K.10
Saito, T.11
Ajiro, T.12
Yoshimura, K.13
-
45
-
-
34547398627
-
-
10.1143/JPSJ.76.063711
-
Y. Tsujimoto, Y. Baba, N. Oba, H. Kageyama, T. Fukui, Y. Narumi, K. Kindo, T. Saito, M. Takano, Y. Ajiro, and K. Yoshimura, J. Phys. Soc. Jpn. 76, 063711 (2007). 10.1143/JPSJ.76.063711
-
(2007)
J. Phys. Soc. Jpn.
, vol.76
, pp. 063711
-
-
Tsujimoto, Y.1
Baba, Y.2
Oba, N.3
Kageyama, H.4
Fukui, T.5
Narumi, Y.6
Kindo, K.7
Saito, T.8
Takano, M.9
Ajiro, Y.10
Yoshimura, K.11
-
46
-
-
57749193312
-
-
10.1103/PhysRevB.78.214410
-
Y. Tsujimoto, H. Kageyama, Y. Baba, A. Kitada, T. Yamamoto, Y. Narumi, K. Kindo, M. Nishi, J. P. Carlo, A. A. Aczel, T. J. Williams, T. Goko, G. M. Luke, Y. J. Uemura, Y. Ueda, Y. Ajiro, and K. Yoshimura, Phys. Rev. B 78, 214410 (2008). 10.1103/PhysRevB.78.214410
-
(2008)
Phys. Rev. B
, vol.78
, pp. 214410
-
-
Tsujimoto, Y.1
Kageyama, H.2
Baba, Y.3
Kitada, A.4
Yamamoto, T.5
Narumi, Y.6
Kindo, K.7
Nishi, M.8
Carlo, J.P.9
Aczel, A.A.10
Williams, T.J.11
Goko, T.12
Luke, G.M.13
Uemura, Y.J.14
Ueda, Y.15
Ajiro, Y.16
Yoshimura, K.17
-
47
-
-
54349098743
-
-
10.1143/JPSJ.77.104705
-
M. Yoshida, N. Ogata, M. Takigawa, T. Kitano, H. Kageyama, Y. Ajiro, and K. Yoshimura, J. Phys. Soc. Jpn. 77, 104705 (2008). 10.1143/JPSJ.77.104705
-
(2008)
J. Phys. Soc. Jpn.
, vol.77
, pp. 104705
-
-
Yoshida, M.1
Ogata, N.2
Takigawa, M.3
Kitano, T.4
Kageyama, H.5
Ajiro, Y.6
Yoshimura, K.7
|