-
2
-
-
33749233435
-
-
10.1103/PhysRevB.72.064427;
-
C. Bayer, J. Jorzick, B. Hillebrands, S. O. Demokritov, R. Kouba, R. Bozinoski, A. N. Slavin, K. Y. Guslienko, D. V. Berkov, N. L. Gorn, and M. P. Kostylev, Phys. Rev. B 72, 064427 (2005) 10.1103/PhysRevB.72.064427
-
(2005)
Phys. Rev. B
, vol.72
, pp. 064427
-
-
Bayer, C.1
Jorzick, J.2
Hillebrands, B.3
Demokritov, S.O.4
Kouba, R.5
Bozinoski, R.6
Slavin, A.N.7
Guslienko, K.Y.8
Berkov, D.V.9
Gorn, N.L.10
Kostylev, M.P.11
-
4
-
-
0000284930
-
-
10.1103/PhysRevB.58.345
-
A. Ercole, A. O. Adeyeye, J. A. C. Bland, and D. G. Hasko, Phys. Rev. B 58, 345 (1998). 10.1103/PhysRevB.58.345
-
(1998)
Phys. Rev. B
, vol.58
, pp. 345
-
-
Ercole, A.1
Adeyeye, A.O.2
Bland, J.A.C.3
Hasko, D.G.4
-
6
-
-
42749104253
-
-
10.1103/PhysRevB.69.174426
-
A. Barman, V. V. Kruglyak, R. J. Hicken, J. M. Rowe, A. Kundrotaite, J. Scott, and M. Rahman, Phys. Rev. B 69, 174426 (2004). 10.1103/PhysRevB.69.174426
-
(2004)
Phys. Rev. B
, vol.69
, pp. 174426
-
-
Barman, A.1
Kruglyak, V.V.2
Hicken, R.J.3
Rowe, J.M.4
Kundrotaite, A.5
Scott, J.6
Rahman, M.7
-
7
-
-
2142820037
-
-
10.1103/PhysRevB.69.094414
-
M. Belov, Z. Liu, R. D. Sydora, and M. R. Freeman, Phys. Rev. B 69, 094414 (2004). 10.1103/PhysRevB.69.094414
-
(2004)
Phys. Rev. B
, vol.69
, pp. 094414
-
-
Belov, M.1
Liu, Z.2
Sydora, R.D.3
Freeman, M.R.4
-
8
-
-
36849119660
-
-
10.1063/1.1735851;
-
H. J. Juretschke, J. Appl. Phys. 31, 1401 (1960) 10.1063/1.1735851
-
(1960)
J. Appl. Phys.
, vol.31
, pp. 1401
-
-
Juretschke, H.J.1
-
10
-
-
27844558383
-
-
10.1038/nature04207;
-
A. A. Tulapurkar, Y. Suzuki, A. Fukushima, H. Kubota, H. Maehara, K. Tsunekawa, D. D. Djayaprawira, N. Watanabe, and S. Yuasa, Nature (London) 438, 339 (2005) 10.1038/nature04207
-
(2005)
Nature (London)
, vol.438
, pp. 339
-
-
Tulapurkar, A.A.1
Suzuki, Y.2
Fukushima, A.3
Kubota, H.4
Maehara, H.5
Tsunekawa, K.6
Djayaprawira, D.D.7
Watanabe, N.8
Yuasa, S.9
-
11
-
-
37749049002
-
-
10.1038/nphys784
-
H. Kubota, A. Fukushima, K. Yakushiji, T. Nagahama, S. Yuasa, K. Ando, H. Maehara, Y. Nagamine, K. Tsunekawa, D. D. Djayaprawire, N. Watanabe, and Y. Suzuki, Nat. Phys. 4, 37 (2008). 10.1038/nphys784
-
(2008)
Nat. Phys.
, vol.4
, pp. 37
-
-
Kubota, H.1
Fukushima, A.2
Yakushiji, K.3
Nagahama, T.4
Yuasa, S.5
Ando, K.6
Maehara, H.7
Nagamine, Y.8
Tsunekawa, K.9
Djayaprawire, D.D.10
Watanabe, N.11
Suzuki, Y.12
-
12
-
-
33744813242
-
-
10.1103/PhysRevLett.96.227601;
-
J. C. Sankey, P. M. Braganca, A. G. F. Garcia, I. N. Krivorotov, R. A. Buhrmann, and D. C. Ralph, Phys. Rev. Lett. 96, 227601 (2006) 10.1103/PhysRevLett.96.227601
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 227601
-
-
Sankey, J.C.1
Braganca, P.M.2
Garcia, A.G.F.3
Krivorotov, I.N.4
Buhrmann, R.A.5
Ralph, D.C.6
-
13
-
-
37749020770
-
-
10.1038/nphys783
-
J. C. Sankey, Y.-T. Cui, J. Z. Sun, J. C. Slonczewski, R. A. Burhrman, and D. C. Ralphs, Nat. Phys. 4, 67 (2008). 10.1038/nphys783
-
(2008)
Nat. Phys.
, vol.4
, pp. 67
-
-
Sankey, J.C.1
Cui, Y.-T.2
Sun, J.Z.3
Slonczewski, J.C.4
Burhrman, R.A.5
Ralphs, D.C.6
-
14
-
-
34247869013
-
-
10.1063/1.2737134;
-
A. Yamaguchi, H. Miyajima, T. Ono, Y. Suzuki, and S. Yuasa, Appl. Phys. Lett. 90, 182507 (2007) 10.1063/1.2737134
-
(2007)
Appl. Phys. Lett.
, vol.90
, pp. 182507
-
-
Yamaguchi, A.1
Miyajima, H.2
Ono, T.3
Suzuki, Y.4
Yuasa, S.5
-
15
-
-
34249691303
-
-
10.1063/1.2742588;
-
A. Yamaguchi, H. Miyajima, S. Kasai, and T. Ono, Appl. Phys. Lett. 90, 212505 (2007) 10.1063/1.2742588
-
(2007)
Appl. Phys. Lett.
, vol.90
, pp. 212505
-
-
Yamaguchi, A.1
Miyajima, H.2
Kasai, S.3
Ono, T.4
-
16
-
-
34848875372
-
-
10.1063/1.2793620
-
A. Yamaguchi, H. Miyajima, T. Ono, Y. Suzuki, and S. Yuasa, Appl. Phys. Lett. 91, 132509 (2007). 10.1063/1.2793620
-
(2007)
Appl. Phys. Lett.
, vol.91
, pp. 132509
-
-
Yamaguchi, A.1
Miyajima, H.2
Ono, T.3
Suzuki, Y.4
Yuasa, S.5
-
17
-
-
33750922223
-
-
10.1063/1.2385405;
-
M. V. Costache, M. Sladkov, C. H. van der Wal, and B. J. van Wees, Appl. Phys. Lett. 89, 192506 (2006) 10.1063/1.2385405
-
(2006)
Appl. Phys. Lett.
, vol.89
, pp. 192506
-
-
Costache, M.V.1
Sladkov, M.2
Van Der Wal, C.H.3
Van Wees, B.J.4
-
18
-
-
33845423661
-
-
10.1063/1.2400058
-
M. V. Costache, S. M. Watts, M. Sladkov, C. H. van der Wal, and B. J. van Wees, Appl. Phys. Lett. 89, 232115 (2006). 10.1063/1.2400058
-
(2006)
Appl. Phys. Lett.
, vol.89
, pp. 232115
-
-
Costache, M.V.1
Watts, S.M.2
Sladkov, M.3
Van Der Wal, C.H.4
Van Wees, B.J.5
-
19
-
-
33947153002
-
-
10.1103/PhysRevLett.98.107602;
-
Y. S. Gui, N. Mecking, X. Zhou, Gwyn Williams, and C.-M. Hu, Phys. Rev. Lett. 98, 107602 (2007) 10.1103/PhysRevLett.98.107602
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 107602
-
-
Gui, Y.S.1
Mecking, N.2
Zhou, X.3
Williams, G.4
Hu, C.-M.5
-
22
-
-
0001317947
-
-
10.1103/PhysRevB.54.9353
-
L. Berger, Phys. Rev. B 54, 9353 (1996). 10.1103/PhysRevB.54.9353
-
(1996)
Phys. Rev. B
, vol.54
, pp. 9353
-
-
Berger, L.1
-
25
-
-
1642585817
-
-
10.1103/PhysRevLett.92.077205
-
A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, and T. Shinjo, Phys. Rev. Lett. 92, 077205 (2004). 10.1103/PhysRevLett.92.077205
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 077205
-
-
Yamaguchi, A.1
Ono, T.2
Nasu, S.3
Miyake, K.4
Mibu, K.5
Shinjo, T.6
-
26
-
-
33746898199
-
-
10.1103/PhysRevLett.97.057203
-
G. S. D. Beach, C. Knutson, C. Nistor, M. Tsoi, and J. L. Erskine, Phys. Rev. Lett. 97, 057203 (2006). 10.1103/PhysRevLett.97.057203
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 057203
-
-
Beach, G.S.D.1
Knutson, C.2
Nistor, C.3
Tsoi, M.4
Erskine, J.L.5
-
27
-
-
27144486090
-
-
10.1103/PhysRevLett.95.026601
-
M. Kläui, P.-O. Jubert, R. Allenspach, A. Bischof, J. A. C. Bland, G. Faini, U. Rüdiger, C. A. F. Vaz, L. Vila, and C. Vouille, Phys. Rev. Lett. 95, 026601 (2005). 10.1103/PhysRevLett.95.026601
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 026601
-
-
Kläui, M.1
Jubert, P.-O.2
Allenspach, R.3
Bischof, A.4
Bland, J.A.C.5
Faini, G.6
Rüdiger, U.7
Vaz, C.A.F.8
Vila, L.9
Vouille, C.10
-
28
-
-
0034612581
-
-
10.1038/35017512
-
M. Tsoi, A. G. M. Jansen, J. Bass, W.-C. Chiang, V. Tsoi, and P. Wyder, Nature (London) 406, 46 (2000). 10.1038/35017512
-
(2000)
Nature (London)
, vol.406
, pp. 46
-
-
Tsoi, M.1
Jansen, A.G.M.2
Bass, J.3
Chiang, W.-C.4
Tsoi, V.5
Wyder, P.6
-
30
-
-
54249128387
-
-
10.1126/science.1162843
-
V. Vlaminck and M. Bailleul, Science 322, 410 (2008). 10.1126/science.1162843
-
(2008)
Science
, vol.322
, pp. 410
-
-
Vlaminck, V.1
Bailleul, M.2
-
31
-
-
0017942408
-
-
10.1063/1.324716;
-
L. Berger, J. Appl. Phys. 49, 2156 (1978) 10.1063/1.324716
-
(1978)
J. Appl. Phys.
, vol.49
, pp. 2156
-
-
Berger, L.1
-
32
-
-
0020722815
-
-
10.1063/1.333530
-
L. Berger, J. Appl. Phys. 55, 1954 (1984). 10.1063/1.333530
-
(1984)
J. Appl. Phys.
, vol.55
, pp. 1954
-
-
Berger, L.1
-
33
-
-
1842452738
-
-
10.1103/PhysRevLett.92.086601
-
G. Tatara and H. Kohno, Phys. Rev. Lett. 92, 086601 (2004). 10.1103/PhysRevLett.92.086601
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 086601
-
-
Tatara, G.1
Kohno, H.2
-
34
-
-
19644388061
-
-
10.1103/PhysRevLett.93.127204
-
S. Zhang and Z. Li, Phys. Rev. Lett. 93, 127204 (2004). 10.1103/PhysRevLett.93.127204
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 127204
-
-
Zhang, S.1
Li, Z.2
-
35
-
-
15944378194
-
-
10.1209/epl/i2004-10452-6
-
A. Thiaville, Y. Nakatani, J. Miltat, and Y. Suzuki, Europhys. Lett. 69, 990 (2005). 10.1209/epl/i2004-10452-6
-
(2005)
Europhys. Lett.
, vol.69
, pp. 990
-
-
Thiaville, A.1
Nakatani, Y.2
Miltat, J.3
Suzuki, Y.4
-
37
-
-
38849133422
-
-
10.1103/PhysRevB.77.014439
-
Y. Nakatani, J. Shibata, G. Tatara, H. Kohno, A. Thiaville, and J. Miltat, Phys. Rev. B 77, 014439 (2008). 10.1103/PhysRevB.77.014439
-
(2008)
Phys. Rev. B
, vol.77
, pp. 014439
-
-
Nakatani, Y.1
Shibata, J.2
Tatara, G.3
Kohno, H.4
Thiaville, A.5
Miltat, J.6
-
38
-
-
20744454785
-
-
10.1103/PhysRevB.66.132402
-
K. Yu. Guslienko, S. O. Demokritov, B. Hillebrands, and A. N. Slavin, Phys. Rev. B 66, 132402 (2002). 10.1103/PhysRevB.66.132402
-
(2002)
Phys. Rev. B
, vol.66
, pp. 132402
-
-
Yu. Guslienko, K.1
Demokritov, S.O.2
Hillebrands, B.3
Slavin, A.N.4
-
40
-
-
51349141860
-
-
10.1103/PhysRevB.78.104401
-
A. Yamaguchi, K. Motoi, A. Hirohata, H. Miyajima, Y. Miyashita, and Y. Sanada, Phys. Rev. B 78, 104401 (2008). 10.1103/PhysRevB.78.104401
-
(2008)
Phys. Rev. B
, vol.78
, pp. 104401
-
-
Yamaguchi, A.1
Motoi, K.2
Hirohata, A.3
Miyajima, H.4
Miyashita, Y.5
Sanada, Y.6
-
41
-
-
18544388130
-
-
10.1063/1.1702557
-
E. Schlomann, J. Appl. Phys. 33, 2825 (1962). 10.1063/1.1702557
-
(1962)
J. Appl. Phys.
, vol.33
, pp. 2825
-
-
Schlomann, E.1
-
44
-
-
65249086955
-
-
10.1063/1.3056143
-
A. Yamaguchi, K. Motoi, H. Miayajima, and Y. Nakatani, J. Appl. Phys. 105, 07D301 (2009). 10.1063/1.3056143
-
(2009)
J. Appl. Phys.
, vol.105
-
-
Yamaguchi, A.1
Motoi, K.2
Miayajima, H.3
Nakatani, Y.4
-
45
-
-
0000169622
-
-
10.1088/0022-3719/19/35/014
-
B. A. Kalinikos and A. N. Slavin, J. Phys. C 19, 7013 (1986). 10.1088/0022-3719/19/35/014
-
(1986)
J. Phys. C
, vol.19
, pp. 7013
-
-
Kalinikos, B.A.1
Slavin, A.N.2
-
46
-
-
67649985955
-
-
Here, the amplitude of the dc voltages, VAMR (ωk) and VHall (ωk), is calculated by using Eqs. 41 42 by replacing both the current density j and the resistivity ρ with the current I and resistance R, respectively.
-
Here, the amplitude of the dc voltages, VAMR (ωk) and VHall (ωk), is calculated by using Eqs. 41 42 by replacing both the current density j and the resistivity ρ with the current I and resistance R, respectively.
-
-
-
-
47
-
-
67649933276
-
-
These values are obtained by substituting the width of the wire (w=5 μm) and the distance between the center conductive line and ground line (y=50 μm).
-
These values are obtained by substituting the width of the wire (w=5 μm) and the distance between the center conductive line and ground line (y=50 μm).
-
-
-
-
48
-
-
67649939245
-
-
For precise analysis, accurate estimation of the derivatives x, y, θ x, and θ y is important. However, as the SW length and the amplitude of the SW modes cannot be explicitly defined in the measurements, the derivatives are difficult to determine precisely at this stage. On the other hand, the derivatives y and θ y dominate the higher-order SW excitation state as described by Eq. 47, where the two-dimensional spin variation contains a large DW or higher-order SW excitation
-
For precise analysis, accurate estimation of the derivatives x, y, θ x, and θ y is important. However, as the SW length and the amplitude of the SW modes cannot be explicitly defined in the measurements, the derivatives are difficult to determine precisely at this stage. On the other hand, the derivatives y and θ y dominate the higher-order SW excitation state as described by Eq. 47, where the two-dimensional spin variation contains a large DW or higher-order SW excitation.
-
-
-
-
50
-
-
67649957974
-
-
Similar effect can be expected in a microscopic ferromagnetic structure with the presence of a DW. If a twisted spin structure such as DW existed in the wire, the contributions of the spin torques may also increase with the spatial derivatives. For instance, the contributions of the driving torques can be evaluated in a twisted spin structure of 180° DW with 300 nm in width. x is estimated to be 180° 300 nm =1.05× 107 rad/m. The contribution of the adiabatic spin-transfer torque is udc 1 αΔ x =7.9× 10-2 and urf 1 αΔ x =2.5× 10-2, indicating that the spin torque controls the magnetization dynamics. These values are much larger than the additional Hall voltage induced by the dc current and hence are not applicable to our results here. Similarly, y can be obtained for the higher-order SW excitation, which is hard to describe using the one-dimensional spin-configuration model
-
Similar effect can be expected in a microscopic ferromagnetic structure with the presence of a DW. If a twisted spin structure such as DW existed in the wire, the contributions of the spin torques may also increase with the spatial derivatives. For instance, the contributions of the driving torques can be evaluated in a twisted spin structure of 180° DW with 300 nm in width. x is estimated to be 180° 300 nm =1.05× 107 rad/m. The contribution of the adiabatic spin-transfer torque is udc 1 αΔ x =7.9× 10-2 and urf 1 αΔ x =2.5× 10-2, indicating that the spin torque controls the magnetization dynamics. These values are much larger than the additional Hall voltage induced by the dc current and hence are not applicable to our results here. Similarly, y can be obtained for the higher-order SW excitation, which is hard to describe using the one-dimensional spin-configuration model.
-
-
-
|