-
1
-
-
0007894647
-
The nonnegativity of solutions of delay differential equations
-
Bodnar M. The nonnegativity of solutions of delay differential equations. Appl. Math. Lett. 13 (2000)
-
(2000)
Appl. Math. Lett.
, vol.13
-
-
Bodnar, M.1
-
2
-
-
0028790729
-
Growth of nonnecrotic tumors in the presence and absence of inhibitors
-
Byrne H., and Chaplain M. Growth of nonnecrotic tumors in the presence and absence of inhibitors. Math. Biosci. 130 (1995) 151-181
-
(1995)
Math. Biosci.
, vol.130
, pp. 151-181
-
-
Byrne, H.1
Chaplain, M.2
-
3
-
-
0030586186
-
Growth of necrotic tumors in the presence and absence of inhibitors
-
Byrne H., and Chaplain M. Growth of necrotic tumors in the presence and absence of inhibitors. Math. Biosci. 135 (1996) 187-216
-
(1996)
Math. Biosci.
, vol.135
, pp. 187-216
-
-
Byrne, H.1
Chaplain, M.2
-
4
-
-
0034040582
-
Analysis of a mathematical model of the effect of inhibitors on the growth of tumors
-
Cui S., and Friedman A. Analysis of a mathematical model of the effect of inhibitors on the growth of tumors. Math. Biosci. 164 (2000) 103-137
-
(2000)
Math. Biosci.
, vol.164
, pp. 103-137
-
-
Cui, S.1
Friedman, A.2
-
5
-
-
0035869870
-
Analysis of a mathematical model of the growth of necrotic tumors
-
Cui S., and Friedman A. Analysis of a mathematical model of the growth of necrotic tumors. J. Math. Anal. Appl. 255 (2001) 636-677
-
(2001)
J. Math. Anal. Appl.
, vol.255
, pp. 636-677
-
-
Cui, S.1
Friedman, A.2
-
6
-
-
34547133457
-
Analysis of mathematical models for the growth of tumors with time delays in cell proliferation
-
Cui S., and Xu S. Analysis of mathematical models for the growth of tumors with time delays in cell proliferation. J. Math. Anal. Appl. 336 (2007) 523-541
-
(2007)
J. Math. Anal. Appl.
, vol.336
, pp. 523-541
-
-
Cui, S.1
Xu, S.2
-
7
-
-
0020453046
-
Migration and internalization of cells and polystyrene microspheres in tumor cell spheroids
-
Dorie M., Kallman R., Rapacchietta D., et al. Migration and internalization of cells and polystyrene microspheres in tumor cell spheroids. Exp. Cell Res. 141 (1982) 201-209
-
(1982)
Exp. Cell Res.
, vol.141
, pp. 201-209
-
-
Dorie, M.1
Kallman, R.2
Rapacchietta, D.3
-
8
-
-
0033094895
-
Analysis of a mathematical model for the growth of tumors
-
Friedman A., and Reitich F. Analysis of a mathematical model for the growth of tumors. J. Math. Biol. 38 (1999) 262-284
-
(1999)
J. Math. Biol.
, vol.38
, pp. 262-284
-
-
Friedman, A.1
Reitich, F.2
-
9
-
-
0000128125
-
Models for the growth of solid tumor by diffusion
-
Greenspan H. Models for the growth of solid tumor by diffusion. Stud. Appl. Math. 51 (1972) 317-340
-
(1972)
Stud. Appl. Math.
, vol.51
, pp. 317-340
-
-
Greenspan, H.1
-
10
-
-
0017198676
-
On the growth and stability of cell cultures and solid tumors
-
Greenspan H. On the growth and stability of cell cultures and solid tumors. J. Theor. Biol. 56 (1976) 229-242
-
(1976)
J. Theor. Biol.
, vol.56
, pp. 229-242
-
-
Greenspan, H.1
-
12
-
-
0005828897
-
Stability and bifurcation in delay-differential equations with two delays
-
Li X., Ruan S., Wei J., et al. Stability and bifurcation in delay-differential equations with two delays. J. Math. Anal. Appl. 236 (1999) 254-280
-
(1999)
J. Math. Anal. Appl.
, vol.236
, pp. 254-280
-
-
Li, X.1
Ruan, S.2
Wei, J.3
-
13
-
-
4644254239
-
Hopf and resonant codimension two bifurcation in van der Pol equation with two time delays
-
Liao X.F. Hopf and resonant codimension two bifurcation in van der Pol equation with two time delays. Chaos, Solitons & Fractals 23 (2005) 857-871
-
(2005)
Chaos, Solitons & Fractals
, vol.23
, pp. 857-871
-
-
Liao, X.F.1
-
14
-
-
33846305414
-
A remark on the ODE with two discrete delays
-
Piotrowska M.J. A remark on the ODE with two discrete delays. J. Math. Anal. Appl. 329 (2007) 664-676
-
(2007)
J. Math. Anal. Appl.
, vol.329
, pp. 664-676
-
-
Piotrowska, M.J.1
-
15
-
-
38849171712
-
Hopf bifurcation in a solid asascular tumor growth model with two discrete delays
-
10.1016/j.mcm.2007.02.030
-
Piotrowska M.J. Hopf bifurcation in a solid asascular tumor growth model with two discrete delays. Math. Comput. Mod. (2007) 10.1016/j.mcm.2007.02.030
-
(2007)
Math. Comput. Mod.
-
-
Piotrowska, M.J.1
-
16
-
-
0032838793
-
Modelling the internalisation of labelled cells in tumor spheroids
-
Thompson K., and Byrne H. Modelling the internalisation of labelled cells in tumor spheroids. Bull. Math. Biol. 61 (1999) 601-623
-
(1999)
Bull. Math. Biol.
, vol.61
, pp. 601-623
-
-
Thompson, K.1
Byrne, H.2
-
17
-
-
0347130009
-
Stability and bifurcation in a neural network model with two delays
-
Wei J., and Ruan S. Stability and bifurcation in a neural network model with two delays. Physica D 130 (1999) 255-272
-
(1999)
Physica D
, vol.130
, pp. 255-272
-
-
Wei, J.1
Ruan, S.2
-
18
-
-
1642312070
-
Direction and stability of bifurcating periodic solutions of a chemostat model with two distributed delays
-
Yuan S., Song Y., and Han M. Direction and stability of bifurcating periodic solutions of a chemostat model with two distributed delays. Chaos, Solitons & Fractals 21 (2004) 1109-1123
-
(2004)
Chaos, Solitons & Fractals
, vol.21
, pp. 1109-1123
-
-
Yuan, S.1
Song, Y.2
Han, M.3
-
19
-
-
0347355137
-
Bifurcation analysis of a chemostat model with two distributed delays
-
Yuan S., and Han M. Bifurcation analysis of a chemostat model with two distributed delays. Chaos, Solitons & Fractals 20 (2004) 995-1004
-
(2004)
Chaos, Solitons & Fractals
, vol.20
, pp. 995-1004
-
-
Yuan, S.1
Han, M.2
|