메뉴 건너뛰기




Volumn 79, Issue 20, 2009, Pages

Nonmonotonic magnetoresistance of two-dimensional electron systems in the ballistic regime

Author keywords

[No Author keywords available]

Indexed keywords


EID: 67649084255     PISSN: 10980121     EISSN: 1550235X     Source Type: Journal    
DOI: 10.1103/PhysRevB.79.205319     Document Type: Article
Times cited : (11)

References (24)
  • 1
    • 0003858739 scopus 로고
    • L. D. Landau Course of Theoretical Physics (Pergamon, New York
    • E. M. Lifshits and L. P. Pitaevskii, Statistical Physics Part II, L. D. Landau Course of Theoretical Physics (Pergamon, New York, 1986), Vol. IX.
    • (1986) Statistical Physics Part II , vol.9
    • Lifshits, E.M.1    Pitaevskii, L.P.2
  • 3
    • 0037458421 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.90.076801
    • I. V. Gornyi and A. D. Mirlin, Phys. Rev. Lett. 90, 076801 (2003). 10.1103/PhysRevLett.90.076801
    • (2003) Phys. Rev. Lett. , vol.90 , pp. 076801
    • Gornyi, I.V.1    Mirlin, A.D.2
  • 7
    • 40849092719 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.100.106806
    • T. A. Sedrakyan and M. E. Raikh, Phys. Rev. Lett. 100, 106806 (2008). 10.1103/PhysRevLett.100.106806
    • (2008) Phys. Rev. Lett. , vol.100 , pp. 106806
    • Sedrakyan, T.A.1    Raikh, M.E.2
  • 9
    • 67649129553 scopus 로고    scopus 로고
    • Throughout this paper the following notations are used: EF = pF2 /2 m, ωc =eB/ m, and τ= σD m /n e2, where m is the electron-band mass (0.067 me for GaAs and 0.21 me for Si) and σD is the Drude conductivity. The latter is found by extrapolating the conductivity in ballistic regime to T=0.
    • Throughout this paper the following notations are used: EF = pF2 /2 m, ωc =eB/ m, and τ= σD m /n e2, where m is the electron-band mass (0.067 me for GaAs and 0.21 me for Si) and σD is the Drude conductivity. The latter is found by extrapolating the conductivity in ballistic regime to T=0.
  • 10
    • 67649085302 scopus 로고    scopus 로고
    • For short-range scatterers case, τ should be of the same order as the all-angle scattering time τq. From temperature dependence of the Shubnikov-de Haas oscillations amplitude we found that for all our samples τq equal (0.4-1) τ, indicating short-range scattering.
    • For short-range scatterers case, τ should be of the same order as the all-angle scattering time τq. From temperature dependence of the Shubnikov-de Haas oscillations amplitude we found that for all our samples τq equal (0.4-1) τ, indicating short-range scattering.
  • 17
    • 4244094906 scopus 로고
    • 10.1103/PhysRevLett.44.1469;
    • F. Stern, Phys. Rev. Lett. 44, 1469 (1980) 10.1103/PhysRevLett.44.1469
    • (1980) Phys. Rev. Lett. , vol.44 , pp. 1469
    • Stern, F.1
  • 18
    • 21544442115 scopus 로고
    • 10.1103/PhysRevB.33.1076;
    • A. Gold and V. T. Dolgopolov, Phys. Rev. B 33, 1076 (1986) 10.1103/PhysRevB.33.1076
    • (1986) Phys. Rev. B , vol.33 , pp. 1076
    • Gold, A.1    Dolgopolov, V.T.2
  • 21
    • 67649104850 scopus 로고    scopus 로고
    • Because of additional valley degeneracy in silicon λ=1+15 F0σ / (1+ F0σ).
    • Because of additional valley degeneracy in silicon λ=1+15 F0σ / (1+ F0σ). T. A. Sedrakyan and M. E. Raikh, private communication.
    • Sedrakyan, T.A.1    Raikh, M.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.