메뉴 건너뛰기




Volumn 336, Issue 2, 2009, Pages 773-779

Prediction of hydrophile-lipophile balance values of anionic surfactants using a quantitative structure-property relationship

Author keywords

Hydrophile lipophile balance (HLB); Quantitative structure property relationship (QSPR); Radial basis function neural network (RBFNN); Stepwise multiple linear regression (MLR)

Indexed keywords

DESCRIPTOR EQUATION; HYDROPHILE-LIPOPHILE BALANCE; HYDROPHILE-LIPOPHILE BALANCE (HLB); QSPR MODEL; QUANTITATIVE STRUCTURE PROPERTY RELATIONSHIPS; QUANTITATIVE STRUCTURE-PROPERTY RELATIONSHIP (QSPR); RADIAL BASIS FUNCTION NEURAL NETWORK (RBFNN); RADIAL BASIS FUNCTION NEURAL NETWORKS; ROOT MEAN SQUARE ERRORS; SQUARED CORRELATION COEFFICIENTS; STEPWISE MULTIPLE LINEAR REGRESSION; STEPWISE MULTIPLE LINEAR REGRESSION (MLR); TEST SETS; TRAINING SETS;

EID: 67549106613     PISSN: 00219797     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jcis.2009.04.002     Document Type: Article
Times cited : (16)

References (38)
  • 9
    • 0004220314 scopus 로고
    • revised ed, Peking Univ. Press, Beijing
    • G.X. Zhao, Physical Chemistry of Surfactant, revised ed., Peking Univ. Press, Beijing, 1991, pp. 470-480.
    • (1991) Physical Chemistry of Surfactant , pp. 470-480
    • Zhao, G.X.1
  • 21
    • 67549139315 scopus 로고    scopus 로고
    • ISIS Draw 2.3, MDL Information Systems, Inc., 1990-2000.
    • ISIS Draw 2.3, MDL Information Systems, Inc., 1990-2000.
  • 22
    • 67549124040 scopus 로고    scopus 로고
    • 6.01, Hypercube, Inc
    • HyperChem 6.01, Hypercube, Inc., 2000.
    • (2000)
    • HyperChem1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.