메뉴 건너뛰기




Volumn 57, Issue 1-2, 2009, Pages 253-260

Calculation of fractional derivatives of noisy data with genetic algorithms

Author keywords

Fractional calculus; Fractional derivatives; Genetic algorithms; Numerical differentiation

Indexed keywords

FITNESS FUNCTIONS; FRACTIONAL CALCULUS; FRACTIONAL DERIVATIVES; FRACTIONAL ORDER; NOISY DATA; NON-SMOOTH; NUMERICAL DIFFERENTIATION; OPTIMIZATION FORMULATIONS;

EID: 67449164063     PISSN: 0924090X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11071-008-9436-1     Document Type: Article
Times cited : (42)

References (29)
  • 2
    • 0002128448 scopus 로고
    • Fractional calculus
    • B. Ross 1977 Fractional calculus Math. Mag. 50 15 122
    • (1977) Math. Mag. , vol.50 , pp. 15-122
    • Ross, B.1
  • 5
    • 0020751558 scopus 로고
    • Fractional calculus-a different approach to the analysis of viscoelastically damped structures
    • R.L. Bagley P.J. Torvik 1983 Fractional calculus-a different approach to the analysis of viscoelastically damped structures AIAA J. 21 741 748
    • (1983) AIAA J. , vol.21 , pp. 741-748
    • Bagley, R.L.1    Torvik, P.J.2
  • 7
    • 0030464353 scopus 로고    scopus 로고
    • Fractional relaxation-oscillation and fractional diffusion-wave phenomena
    • F. Mainardi 1996 Fractional relaxation-oscillation and fractional diffusion-wave phenomena Chaos Solitons Fractals 7 1461 1477
    • (1996) Chaos Solitons Fractals , vol.7 , pp. 1461-1477
    • Mainardi, F.1
  • 8
    • 0030651602 scopus 로고    scopus 로고
    • Analysis and design of fractional-order digital control systems
    • J.T. Machado 1997 Analysis and design of fractional-order digital control systems J. Syst. Anal. Model. Simul. 27 107 122
    • (1997) J. Syst. Anal. Model. Simul. , vol.27 , pp. 107-122
    • MacHado, J.T.1
  • 10
    • 0001805106 scopus 로고    scopus 로고
    • Discrete-time fractional-order controllers
    • J.T. Machado 2001 Discrete-time fractional-order controllers J. Fract. Calc. Appl. Anal. 4 47 66
    • (2001) J. Fract. Calc. Appl. Anal. , vol.4 , pp. 47-66
    • MacHado, J.T.1
  • 11
    • 0004681849 scopus 로고
    • A fractional integral and its physical interpretation
    • R.R. Nigmatullin 1992 A fractional integral and its physical interpretation Theor. Math. Phys. 90 242 251
    • (1992) Theor. Math. Phys. , vol.90 , pp. 242-251
    • Nigmatullin, R.R.1
  • 12
    • 4043094729 scopus 로고
    • On the paper by R.R. Nigmatullin "a fractional integral and its physical interpretation"
    • R.S. Rutman 1994 On the paper by R.R. Nigmatullin "A fractional integral and its physical interpretation" Theor. Math. Phys. 100 1154 1156
    • (1994) Theor. Math. Phys. , vol.100 , pp. 1154-1156
    • Rutman, R.S.1
  • 13
    • 0000162804 scopus 로고
    • The relationship between fractional calculus and fractals
    • F.B. Tatom 1995 The relationship between fractional calculus and fractals Fractals 3 217 229
    • (1995) Fractals , vol.3 , pp. 217-229
    • Tatom, F.B.1
  • 14
    • 0031558290 scopus 로고    scopus 로고
    • Fractional integral associated to generalized cookie-cutter set and its physical interpretation
    • PII S0305447097781538
    • Z. Yu F. Ren J. Zhou 1997 Fractional integral associated to generalized cookie-cutter set and its physical interpretation J. Phys. A: Math. Gen. 30 5569 5577 (Pubitemid 127373697)
    • (1997) Journal of Physics A: Mathematical and General , vol.30 , Issue.15 , pp. 5569-5577
    • Yu, Z.-G.1    Ren, F.-Y.2    Zhou, J.3
  • 15
    • 0002202976 scopus 로고    scopus 로고
    • Geometric interpretation of the fractional derivative
    • F.B. Adda 1997 Geometric interpretation of the fractional derivative J. Fract. Calc. 11 21 52
    • (1997) J. Fract. Calc. , vol.11 , pp. 21-52
    • Adda, F.B.1
  • 16
    • 0032136257 scopus 로고    scopus 로고
    • Physical and geometrical interpretation of fractional operators
    • PII S0016003297000483
    • M. Moshrefi-Torbati J.K. Hammond 1998 Physical and geometrical interpretation of fractional operators J. Franklin Inst. B 335 1077 1086 (Pubitemid 128389676)
    • (1998) Journal of the Franklin Institute , vol.335 , Issue.6 , pp. 1077-1086
    • Moshrefi-Torbati, M.1    Hammond, J.K.2
  • 17
    • 0242354999 scopus 로고    scopus 로고
    • Geometrical and physical interpretation of fractional integration and fractional differentiation
    • I. Podlubny 2002 Geometrical and physical interpretation of fractional integration and fractional differentiation J. Fract. Calc. Appl. Anal. 5 357 366
    • (2002) J. Fract. Calc. Appl. Anal. , vol.5 , pp. 357-366
    • Podlubny, I.1
  • 18
    • 14844296496 scopus 로고    scopus 로고
    • A probabilistic interpretation of the fractional-order differentiation
    • J.T. Machado 2003 A probabilistic interpretation of the fractional-order differentiation J. Fract. Calc. Appl. Anal. 6 73 80
    • (2003) J. Fract. Calc. Appl. Anal. , vol.6 , pp. 73-80
    • MacHado, J.T.1
  • 19
    • 4043144342 scopus 로고    scopus 로고
    • Probability interpretation of the integral of fractional order
    • DOI 10.1023/B:TAMP.0000018457.70786.36
    • A.A. Stanislavsky 2004 Probabilistic interpretation of the integral of fractional order Theor. Math. Phys. 138 418 431 (Pubitemid 39063454)
    • (2004) Theoretical and Mathematical Physics , vol.138 , Issue.3 , pp. 418-431
    • Stanislavsky, A.A.1
  • 20
    • 22144431598 scopus 로고    scopus 로고
    • General explicit difference formulas for numerical differentiation
    • DOI 10.1016/j.cam.2004.12.026, PII S0377042704006454
    • J. Li 2005 General explicit difference formulas for numerical differentiation J. Comput. Appl. Math. 183 29 52 (Pubitemid 40970399)
    • (2005) Journal of Computational and Applied Mathematics , vol.183 , Issue.1 , pp. 29-52
    • Li, J.1
  • 21
    • 21844510167 scopus 로고
    • A variational method for numerical differentiation
    • I. Knowles R. Wallace 1995 A variational method for numerical differentiation Numer. Math. 70 91 110
    • (1995) Numer. Math. , vol.70 , pp. 91-110
    • Knowles, I.1    Wallace, R.2
  • 23
    • 67449138997 scopus 로고    scopus 로고
    • Numerical differentiation: Local versus global methods
    • Ahnert, K., Abel, M.: Numerical differentiation: local versus global methods. Comput. Phys. (2006)
    • (2006) Comput. Phys.
    • Ahnert, K.1    Abel, M.2
  • 24
    • 34247500347 scopus 로고    scopus 로고
    • A variational approach to reconstructing images corrupted by poisson noise
    • DOI 10.1007/s10851-007-0652-y
    • T. Le R. Chartrand T.J. Asaki 2007 A variational approach to reconstructing images corrupted by Poisson noise J. Math. Imaging Vis. 27 257 263 (Pubitemid 46664094)
    • (2007) Journal of Mathematical Imaging and Vision , vol.27 , Issue.3 , pp. 257-263
    • Le, T.1    Chartrand, R.2    Asaki, T.J.3
  • 27
    • 67349226613 scopus 로고    scopus 로고
    • Numerical calculation of fractional derivatives of non-smooth data
    • Saint Petersburg, Russia
    • Machado, J.T., Galhano, A.: Numerical calculation of fractional derivatives of non-smooth data. In: ENOC 2008-6th EUROMECH Conference, Saint Petersburg, Russia (2008)
    • (2008) ENOC 2008-6th EUROMECH Conference
    • MacHado, J.T.1    Galhano, A.2
  • 28
    • 0035374241 scopus 로고    scopus 로고
    • Inverse problems light: Numerical differentiation
    • M. Hanke O. Scherzer 2001 Inverse problems light: numerical differentiation Am. Math. Mon. 108 512 521
    • (2001) Am. Math. Mon. , vol.108 , pp. 512-521
    • Hanke, M.1    Scherzer, O.2
  • 29
    • 34547941816 scopus 로고    scopus 로고
    • Wavelet approach to numerical differentiation of noisy functions
    • J. Wang 2007 Wavelet approach to numerical differentiation of noisy functions Commun. Pure Appl. Anal. 6 873 897
    • (2007) Commun. Pure Appl. Anal. , vol.6 , pp. 873-897
    • Wang, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.