-
2
-
-
0004167131
-
-
Academic Press, New York, San Francisco, London
-
Cvetković D.M., Doob M., and Sachs H. Spectra of Graphs Theory and Applications (1980), Academic Press, New York, San Francisco, London
-
(1980)
Spectra of Graphs Theory and Applications
-
-
Cvetković, D.M.1
Doob, M.2
Sachs, H.3
-
4
-
-
31244435712
-
The complement of the path is determined by its spectrum
-
Doob M., and Haemers W.H. The complement of the path is determined by its spectrum. Linear Algebra Appl. 356 (2002) 57-65
-
(2002)
Linear Algebra Appl.
, vol.356
, pp. 57-65
-
-
Doob, M.1
Haemers, W.H.2
-
5
-
-
31244433070
-
Minimizing algebraic connectivity over connected graphs with fixed girth
-
Fallat S.M., Kirkland S., and Pati S. Minimizing algebraic connectivity over connected graphs with fixed girth. Discrete Math. 254 (2002) 115-142
-
(2002)
Discrete Math.
, vol.254
, pp. 115-142
-
-
Fallat, S.M.1
Kirkland, S.2
Pati, S.3
-
6
-
-
33750993774
-
Spectral characterization of graphs with index at most sqrt(2 + sqrt(5))
-
Ghareghai N., Omidi G.R., and Tayfeh-Rezaie B. Spectral characterization of graphs with index at most sqrt(2 + sqrt(5)). Linear Algebra Appl. 420 (2007) 483-489
-
(2007)
Linear Algebra Appl.
, vol.420
, pp. 483-489
-
-
Ghareghai, N.1
Omidi, G.R.2
Tayfeh-Rezaie, B.3
-
7
-
-
0043278321
-
Constructing cospectral graphs
-
Godsil C.D., and McKay B.D. Constructing cospectral graphs. Aequationes Math. 25 (1982) 257-268
-
(1982)
Aequationes Math.
, vol.25
, pp. 257-268
-
-
Godsil, C.D.1
McKay, B.D.2
-
8
-
-
0004151494
-
-
Cambridge University Press, Cambridge, England
-
Horn R.A., and Johnson C.R. Matrix Analysis (1985), Cambridge University Press, Cambridge, England
-
(1985)
Matrix Analysis
-
-
Horn, R.A.1
Johnson, C.R.2
-
10
-
-
0742267980
-
Enumeration of cospectral graphs
-
Haemers W.H., and Spence E. Enumeration of cospectral graphs. European J. Combin. 25 (2004) 199-211
-
(2004)
European J. Combin.
, vol.25
, pp. 199-211
-
-
Haemers, W.H.1
Spence, E.2
-
11
-
-
44649125969
-
The multi-fan graphs are determined by their Laplacian spectra
-
Liu X.-G., Zhang Y.-P., and Gui X.-Q. The multi-fan graphs are determined by their Laplacian spectra. Discrete Math. 308 (2008) 4267-4271
-
(2008)
Discrete Math.
, vol.308
, pp. 4267-4271
-
-
Liu, X.-G.1
Zhang, Y.-P.2
Gui, X.-Q.3
-
12
-
-
33750999449
-
Laplacian matrices of graphs: A survey
-
Merris R. Laplacian matrices of graphs: A survey. Linear Algebra Appl. 197&198 (1994) 143-176
-
(1994)
Linear Algebra Appl.
, vol.197-198
, pp. 143-176
-
-
Merris, R.1
-
13
-
-
33847273846
-
Starlike trees are determined by their Laplacian spectrum
-
Omidi G.R., and Tajbakhsh K. Starlike trees are determined by their Laplacian spectrum. Linear Algebra Appl. 422 (2007) 654-658
-
(2007)
Linear Algebra Appl.
, vol.422
, pp. 654-658
-
-
Omidi, G.R.1
Tajbakhsh, K.2
-
14
-
-
67349274264
-
The Quasi-Laplacian Spectrum of Graphs
-
Ren Q.-J., Tian J., Zhang D.-X., and Wang F.-Y. The Quasi-Laplacian Spectrum of Graphs. Math. Theory Appl. 19 3 (1999) 104-107
-
(1999)
Math. Theory Appl.
, vol.19
, Issue.3
, pp. 104-107
-
-
Ren, Q.-J.1
Tian, J.2
Zhang, D.-X.3
Wang, F.-Y.4
-
16
-
-
48549085290
-
Q-integral graphs with edge-degrees at most five
-
Simić S.K., and Stanić Z. Q-integral graphs with edge-degrees at most five. Discrete Math. 308 (2008) 4625-4634
-
(2008)
Discrete Math.
, vol.308
, pp. 4625-4634
-
-
Simić, S.K.1
Stanić, Z.2
-
17
-
-
0141607701
-
Which graphs are determined by their spectrum?
-
van Dam E.R., and Haemers W.H. Which graphs are determined by their spectrum?. Linear Algebra Appl. 373 (2003) 241-272
-
(2003)
Linear Algebra Appl.
, vol.373
, pp. 241-272
-
-
van Dam, E.R.1
Haemers, W.H.2
-
18
-
-
33644863426
-
On the spectral characterization of T-shape trees
-
Wang W., and Xu C.-X. On the spectral characterization of T-shape trees. Linear Algebra Appl. 414 (2006) 492-501
-
(2006)
Linear Algebra Appl.
, vol.414
, pp. 492-501
-
-
Wang, W.1
Xu, C.-X.2
-
19
-
-
33748309452
-
Note: The T-shape tree is determined by its Laplacian spectrum
-
Wang W., and Xu C.-X. Note: The T-shape tree is determined by its Laplacian spectrum. Linear Algebra Appl. 419 (2006) 78-81
-
(2006)
Linear Algebra Appl.
, vol.419
, pp. 78-81
-
-
Wang, W.1
Xu, C.-X.2
|