메뉴 건너뛰기




Volumn 8, Issue 12, 2008, Pages 2226-2233

Power system on-line static security assessment by using multi-class support vector machines

Author keywords

Machine learning; Multi class Support Vector Machines (SVM); Power system security

Indexed keywords

CONFIDENCE MEASURE; DATA SELECTION; FEATURE SELECTION ALGORITHM; LARGE-SCALE POWER SYSTEMS; MULTI-CLASS SUPPORT VECTOR MACHINES; POWER SYSTEM SECURITY; STATIC SECURITY ASSESSMENT; SYSTEM SECURITY;

EID: 67349167145     PISSN: 18125654     EISSN: 18125662     Source Type: Journal    
DOI: 10.3923/jas.2008.2226.2233     Document Type: Article
Times cited : (27)

References (23)
  • 1
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon, I. and A. Elisseeff, 2003. An introduction to variable and feature selection. J. Mach. Learning Res., 3: 1157-1182.
    • (2003) J. Mach. Learning Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 2
    • 0028430536 scopus 로고
    • A decision tree method for on-line steady state security assessment
    • Hatziargyriou, N., G.C. Contaxis and N.C. Sideris, 1994. A decision tree method for on-line steady state security assessment IEEE Trans. Power Syst., 9: 1052-1061.
    • (1994) IEEE Trans. Power Syst. , vol.9 , pp. 1052-1061
    • Hatziargyriou, N.1    Contaxis, G.C.2    Sideris, N.C.3
  • 3
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multi-class support vector machines
    • Hsu, C.W. and C.J. Lin, 2002. A comparison of methods for multi-class support vector machines. IEEE Trans. Neural Networks, 13: 415-425.
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 4
    • 33750441470 scopus 로고    scopus 로고
    • Marketing segmentation using support vector clustering
    • Huanga, J.J., G.H. Tzeng and C.S. Ong, 2007. Marketing segmentation using support vector clustering. Expert Syst. Appl., 32: 313-317.
    • (2007) Expert Syst. Appl. , vol.32 , pp. 313-317
    • Huanga, J.J.1    Tzeng, G.H.2    Ong, C.S.3
  • 5
    • 0035506958 scopus 로고    scopus 로고
    • Power system security assessment using neural networks: Feature selection usingmg fisher discrimination
    • Jensen, C.A., M.A. EI-Sharkawi and R.J. Marks, 2001. Power system security assessment using neural networks: Feature selection using fisher discrimination. IEEE Trans. Power Syst., 16: 757-763.
    • (2001) IEEE Trans. Power Syst. , vol.16 , pp. 757-763
    • Jensen, C.A.1    Ei-Sharkawi, M.A.2    Marks, R.J.3
  • 6
    • 13844254222 scopus 로고    scopus 로고
    • Power system probabilistic security assessment using bayes classifier
    • Kim, H. and C. Singh, 2005. Power system probabilistic security assessment using bayes classifier. Elect. Power Syst. Res., 74: 157-165.
    • (2005) Elect. Power Syst. Res. , vol.74 , pp. 157-165
    • Kim, H.1    Singh, C.2
  • 7
    • 0036806111 scopus 로고    scopus 로고
    • Power system security
    • Kirschen, D.S., 2002. Power system security. Power Eng., 16: 241-248.
    • (2002) Power Eng. , vol.16 , pp. 241-248
    • Kirschen, D.S.1
  • 9
    • 26444579317 scopus 로고    scopus 로고
    • Half-against-half multiclass support vector machines
    • Proceeding of Multiple Classifier Systems, 2005, 13-15 June, California, USA
    • Lei, H.S. and V. Govindaraju, 2005. Half-against-half multiclass support vector machines. Proceeding of Multiple Classifier Systems'2005, 13-15 June, California, USA, pp: 156-164.
    • (2005) , pp. 156-164
    • Lei, H.S.1    Govindaraju, V.2
  • 11
    • 0026866356 scopus 로고
    • Power system static security assessment using kohonen neural network classifier
    • Neibur, D. and A. Germond, 1991. Power system static security assessment using kohonen neural network classifier. IEEE Trans. Power Syst., 7: 865-872.
    • (1991) IEEE Trans. Power Syst. , vol.7 , pp. 865-872
    • Neibur, D.1    Germond, A.2
  • 12
    • 0005644468 scopus 로고    scopus 로고
    • How to implement SVMs
    • Platt J., 1998. How to implement SVMs. IEEE Intell. Syst., 13: 26-28.
    • (1998) IEEE Intell. Syst. , vol.13 , pp. 26-28
    • Platt, J.1
  • 13
    • 84888364466 scopus 로고    scopus 로고
    • Large margin DAGs for multiclass classification
    • In: Proceeding of Neural Information Processing Systems
    • Plalt, J., N. Cristianini and J. Shawe-Taylor, 1999. Large margin DAGs for multiclass classification. In: Proceeding of Neural Information Processing Systems, 12: 547-553.
    • (1999) , vol.12 , pp. 547-553
    • Plalt, J.1    Cristianini, N.2    Shawe-Taylor, J.3
  • 14
    • 11644275559 scopus 로고    scopus 로고
    • SVMs-a practical consequence of learning theory
    • Scholkopf, B., 1998. SVMs-a practical consequence of learning theory. IEEE Intell. Syst., 13: 18-19.
    • (1998) IEEE Intell. Syst. , vol.13 , pp. 18-19
    • Scholkopf, B.1
  • 15
    • 38649092757 scopus 로고    scopus 로고
    • Artificial neural network using pattern recognition for security assessment and analysis
    • Shanti, K.S., 2008. Artificial neural network using pattern recognition for security assessment and analysis. Neurocomputing, 71: 983-998.
    • (2008) Neurocomputing , vol.71 , pp. 983-998
    • Shanti, K.S.1
  • 17
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Vapnik, V.N., 1999. An overview of statistical learning theory. IEEE Trans. Neural Networks, 10: 988-1000.
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 988-1000
    • Vapnik, V.N.1
  • 18
    • 36849041017 scopus 로고    scopus 로고
    • Transient stability assessment of a power system using PNN and LS-SVM methods
    • Wahab, N.I.A., A. Mohamed and A. Hussain, 2007. Transient stability assessment of a power system using PNN and LS-SVM methods. J. Applied Sci., 7: 3208-3216.
    • (2007) J. Applied Sci. , vol.7 , pp. 3208-3216
    • Wahab, N.I.A.1    Mohamed, A.2    Hussain, A.3
  • 19
    • 33751005852 scopus 로고    scopus 로고
    • Selecting data for fast support vector machine training
    • Wang, J., P. Neskovic and L.N. Cooper, 2007. Selecting data for fast support vector machine training. Stud. Comput. Intell., 35: 61-84.
    • (2007) Stud. Comput. Intell. , vol.35 , pp. 61-84
    • Wang, J.1    Neskovic, P.2    Cooper, L.N.3
  • 21
    • 0032028297 scopus 로고    scopus 로고
    • Feature subset selection using agenetic algorithm
    • Yang, J. and V. Honavar, 1998. Feature subset selection using agenetic algorithm. IEEE Intell. Syst., 13: 44-49.
    • (1998) IEEE Intell. Syst. , vol.13 , pp. 44-49
    • Yang, J.1    Honavar, V.2
  • 22
    • 34548651702 scopus 로고    scopus 로고
    • Weighted mahalanobis distance kernels for support vector machines
    • Yeung, D.S., D. Wang and E.C. Tsang, 2007. Weighted mahalanobis distance kernels for support vector machines. IEEE Trans. Neural Networks, 18: 1453-1462.
    • (2007) IEEE Trans. Neural Networks , vol.18 , pp. 1453-1462
    • Yeung, D.S.1    Wang, D.2    Tsang, E.C.3
  • 23
    • 0028369620 scopus 로고
    • Application of artificial neural networks in power system security and vulnerability assessment
    • Zhou, Q., J. Davidson and A.A. Fouad, 1994. Application of artificial neural networks in power system security and vulnerability assessment. IEEE Trans. Power Syst., 9: 525-532.
    • (1994) IEEE Trans. Power Syst. , vol.9 , pp. 525-532
    • Zhou, Q.1    Davidson, J.2    Fouad, A.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.