메뉴 건너뛰기




Volumn 7, Issue 21, 2007, Pages 3208-3216

Transient stability assessment of a power system using PNN and LS-SVM methods

Author keywords

Artificial neural network; Least squares support vector machines; Probabilistic neural network; Transient stability assessment

Indexed keywords

DEEP NEURAL NETWORKS; ELECTRIC POWER SYSTEM STABILITY; ELECTRIC POWER SYSTEMS; NETWORK LAYERS; NEURAL NETWORKS; STABILITY; SUPPORT VECTOR MACHINES; TIME DOMAIN ANALYSIS; TWO PHASE FLOW;

EID: 36849041017     PISSN: 18125654     EISSN: 18125662     Source Type: Journal    
DOI: 10.3923/jas.2007.3208.3216     Document Type: Article
Times cited : (23)

References (18)
  • 2
    • 50449102956 scopus 로고    scopus 로고
    • Bettiol, A.L., A. Souza, J.L. Todesco and J.R. Tesch Jr., 2003. Estimation of critical clearing times using neural networks. Proc. IEEE Bologna Power Technol. Conf., 3: 6.
    • Bettiol, A.L., A. Souza, J.L. Todesco and J.R. Tesch Jr., 2003. Estimation of critical clearing times using neural networks. Proc. IEEE Bologna Power Technol. Conf., 3: 6.
  • 3
    • 20144373309 scopus 로고    scopus 로고
    • Combined use of supervised and unsupervised learning for power system dynamic security mapping
    • Boudour, M. and A. Hellal, 2005. Combined use of supervised and unsupervised learning for power system dynamic security mapping. Eng. Applic. Artificial Intell., 18: 673-683.
    • (2005) Eng. Applic. Artificial Intell , vol.18 , pp. 673-683
    • Boudour, M.1    Hellal, A.2
  • 4
    • 0026188751 scopus 로고
    • Learning vector quantization for the probabilistic neural network
    • Burrascano, P., 1991. Learning vector quantization for the probabilistic neural network. IEEE Trans. Neural Networks, 2: 458-461.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 458-461
    • Burrascano, P.1
  • 5
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Chen, S., C.F.N. Cowan and P.M. Grant, 1991. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Networks, 2: 302-309.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 6
    • 0033703149 scopus 로고    scopus 로고
    • Transient stability assessment using artificial neural networks
    • Krishna, S. and K.R. Padiyar, 2000. Transient stability assessment using artificial neural networks. Proc. IEEE Int. Conf. Ind. Technol., 2000: 627-632.
    • (2000) Proc. IEEE Int. Conf. Ind. Technol , pp. 627-632
    • Krishna, S.1    Padiyar, K.R.2
  • 7
    • 24944490963 scopus 로고    scopus 로고
    • An open source power system analysis toolbox
    • Milano, F., 2005. An open source power system analysis toolbox. IEEE Trans. Power Syst., 20: 1199-1206.
    • (2005) IEEE Trans. Power Syst , vol.20 , pp. 1199-1206
    • Milano, F.1
  • 9
    • 2542625918 scopus 로고    scopus 로고
    • Support vector machines for transient stability analysis of large-scale power systems
    • Moulin, L.S., A.P.A. da Silva, M.A. El-Sharkawi and R.J. Marks, 2004. Support vector machines for transient stability analysis of large-scale power systems. IEEE Trans. Power Syst., 19: 818-825.
    • (2004) IEEE Trans. Power Syst , vol.19 , pp. 818-825
    • Moulin, L.S.1    da Silva, A.P.A.2    El-Sharkawi, M.A.3    Marks, R.J.4
  • 10
    • 1542359619 scopus 로고    scopus 로고
    • Critical clearing time determination EGAT system using artificial neural networks
    • Pothisarn, C. and S. Jiriwibhakom, 2003. Critical clearing time determination EGAT system using artificial neural networks, Proc. IEEE Power Eng. Soc. Gen. Meeting, 2: 731-736.
    • (2003) Proc. IEEE Power Eng. Soc. Gen. Meeting , vol.2 , pp. 731-736
    • Pothisarn, C.1    Jiriwibhakom, S.2
  • 11
    • 84943274699 scopus 로고
    • A direct adaptive method for faster backpropagation learning: The RPROP algorithm
    • Riedmiller, M. and H. Braun, 1993. A direct adaptive method for faster backpropagation learning: The RPROP algorithm. IEEE Int. Conf. Neural Networks, 1: 586-591.
    • (1993) IEEE Int. Conf. Neural Networks , vol.1 , pp. 586-591
    • Riedmiller, M.1    Braun, H.2
  • 12
    • 8644254440 scopus 로고    scopus 로고
    • Transient stability assessment using neural network
    • Restructuring and Power Technologies, Hong Kong, pp
    • Sanyal, K.K., 2004. Transient stability assessment using neural network. IEEE Int. Conf. Electric Utility Deregulation, Restructuring and Power Technologies, Hong Kong, pp: 633-637.
    • (2004) IEEE Int. Conf. Electric Utility Deregulation , pp. 633-637
    • Sanyal, K.K.1
  • 14
    • 84861496291 scopus 로고    scopus 로고
    • Transient stability analysis of electrical power systems using a neural network based on fuzzy ARTMAP
    • Silveira, M.C.G., A.D.P. Lotufo and C.R. Minussi, 2003. Transient stability analysis of electrical power systems using a neural network based on fuzzy ARTMAP. Proc. IEEE Bologna PowerTech Conf., 3: 7.
    • (2003) Proc. IEEE Bologna PowerTech Conf , vol.3 , pp. 7
    • Silveira, M.C.G.1    Lotufo, A.D.P.2    Minussi, C.R.3
  • 15
    • 85008484889 scopus 로고
    • Enhancements to probabilistic neural networks
    • Specht, D.F., 1992. Enhancements to probabilistic neural networks. Int. Joint Conf. Neural Networks, 1: 525-532.
    • (1992) Int. Joint Conf. Neural Networks , vol.1 , pp. 525-532
    • Specht, D.F.1
  • 16
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machines classifier
    • Suykens, J.A.K. and J. Vandewalle, 1999. Least squares support vector machines classifier. Neural Processing Lett., 9: 293-300.
    • (1999) Neural Processing Lett , vol.9 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.