메뉴 건너뛰기




Volumn 36, Issue 9, 2009, Pages 11671-11674

Artificial neural networks for optimization of gold-bearing slime smelting

Author keywords

Gold; Gold slime; Neural network; Optimum flux composition

Indexed keywords

ARTIFICIAL NEURAL NETWORK; INDUSTRIAL PROCESS; NEURAL NETWORK MODEL; OPTIMUM FLUX; OPTIMUM FLUX COMPOSITION; SLAG COMPOSITIONS; SMELTING PROCESS;

EID: 67349122273     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2009.03.016     Document Type: Article
Times cited : (5)

References (11)
  • 1
    • 15544370563 scopus 로고    scopus 로고
    • Prediction of mechanical properties of DP steels using neural network model
    • Bahrami A., Mousavi Anijdan S.H., and Ekrami A. Prediction of mechanical properties of DP steels using neural network model. Journal of Alloys and Compounds 392 (2005) 177-182
    • (2005) Journal of Alloys and Compounds , vol.392 , pp. 177-182
    • Bahrami, A.1    Mousavi Anijdan, S.H.2    Ekrami, A.3
  • 2
    • 33748942135 scopus 로고    scopus 로고
    • Neural network analysis of the influence of processing on strength and ductility of automotive low carbon sheet steels
    • Capdevila C., Garcia-Mateo C., Caballero F.G., and Garcl'a de Andre's C. Neural network analysis of the influence of processing on strength and ductility of automotive low carbon sheet steels. Computational Materials Science 38 (2006) 192-201
    • (2006) Computational Materials Science , vol.38 , pp. 192-201
    • Capdevila, C.1    Garcia-Mateo, C.2    Caballero, F.G.3    Garcl'a de Andre's, C.4
  • 3
    • 0345359456 scopus 로고    scopus 로고
    • Modeling the correlation between processing parameters and properties of maraging steels using artificial neural network
    • Guo Z., and Sha W. Modeling the correlation between processing parameters and properties of maraging steels using artificial neural network. Computational Materials Science 29 (2004) 12-28
    • (2004) Computational Materials Science , vol.29 , pp. 12-28
    • Guo, Z.1    Sha, W.2
  • 4
    • 0012919021 scopus 로고
    • Multistage feed-forward networks are universal approximators
    • Hornik K., Stinchcombe M., and White H. Multistage feed-forward networks are universal approximators. Neural Networks 5 (1989) 501-506
    • (1989) Neural Networks , vol.5 , pp. 501-506
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 5
    • 0026627415 scopus 로고
    • Kolmogorov's theorem and multilayer neural networks
    • Kurkova V. Kolmogorov's theorem and multilayer neural networks. Neural Networks 5 (1992) 501-506
    • (1992) Neural Networks , vol.5 , pp. 501-506
    • Kurkova, V.1
  • 6
    • 67349240727 scopus 로고    scopus 로고
    • Artificial neural network vs. nonlinear regression for gold content estimation in pyrometallurgy
    • Liu D., Yuan Y., and Liao S. Artificial neural network vs. nonlinear regression for gold content estimation in pyrometallurgy. Expert Systems with Applications 36 7 (2009) 10397-10400
    • (2009) Expert Systems with Applications , vol.36 , Issue.7 , pp. 10397-10400
    • Liu, D.1    Yuan, Y.2    Liao, S.3
  • 9
    • 34249723766 scopus 로고    scopus 로고
    • The use of artificial networks in materials science based research
    • Sha W., and Edwards K.L. The use of artificial networks in materials science based research. Materials and Design 28 (2007) 1747-1752
    • (2007) Materials and Design , vol.28 , pp. 1747-1752
    • Sha, W.1    Edwards, K.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.