메뉴 건너뛰기




Volumn 20, Issue 4, 2009, Pages 701-714

A new method for design and reduction of neuro-fuzzy classification systems

Author keywords

Interpretability; Logical approach; Merging; Neuro fuzzy systems; Reduction

Indexed keywords

DEFUZZIFICATION METHODS; DISCRETIZATION; INPUT AND OUTPUTS; INTERPRETABILITY; LOGICAL APPROACH; NEURO-FUZZY CLASSIFICATIONS; NEURO-FUZZY SYSTEMS; NEW CLASS; NOVEL METHODS; REDUCTION ALGORITHMS;

EID: 67349099090     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2009.2012425     Document Type: Article
Times cited : (61)

References (39)
  • 1
    • 14544280631 scopus 로고    scopus 로고
    • RSPOP: Rough set-based pseudo outer-product fuzzy rule identification algorithm
    • K. K. Ang and C. Quek, "RSPOP: Rough set-based pseudo outer-product fuzzy rule identification algorithm," Neural Comput., vol. 17, pp. 205-43, 2005.
    • (2005) Neural Comput , vol.17 , pp. 205-243
    • Ang, K.K.1    Quek, C.2
  • 2
    • 0344395607 scopus 로고    scopus 로고
    • POPFNN-CRI(S): Pseudo outer product based fuzzy neural network using the compositional rule inference and singleton fuzzifier
    • Dec
    • K. K. Ang, C. Quek, and M. Pasquier, "POPFNN-CRI(S): Pseudo outer product based fuzzy neural network using the compositional rule inference and singleton fuzzifier," IEEE Trans. Syst. Man Cybern. B, Cybern., vol. 33, no. 6, pp. 838-49, Dec. 2003.
    • (2003) IEEE Trans. Syst. Man Cybern. B, Cybern , vol.33 , Issue.6 , pp. 838-849
    • Ang, K.K.1    Quek, C.2    Pasquier, M.3
  • 4
    • 0037597549 scopus 로고    scopus 로고
    • J. Casillas, O. Cordon, F. Herrera, and L. Magdalena, Eds, New York: Springer-Verlag
    • J. Casillas, O. Cordon, F. Herrera, and L. Magdalena, Eds., Interpretability Issues in Fuzzy Modeling. New York: Springer-Verlag, 2003.
    • (2003) Interpretability Issues in Fuzzy Modeling
  • 5
    • 0035897955 scopus 로고    scopus 로고
    • Including a simplicity criterion in the selection of the best rule in a genetic fuzzy learning algorithm
    • L. Castillo, A. Gonzalez, and P. Perez, "Including a simplicity criterion in the selection of the best rule in a genetic fuzzy learning algorithm," Fuzzy Sets Syst., vol. 120, pp. 309-321, 2001.
    • (2001) Fuzzy Sets Syst , vol.120 , pp. 309-321
    • Castillo, L.1    Gonzalez, A.2    Perez, P.3
  • 6
    • 0000810783 scopus 로고    scopus 로고
    • Fuzzy clustering analysis for optimizing fuzzy membership functions
    • Apr
    • M. S. Chen and S. W.Wang, "Fuzzy clustering analysis for optimizing fuzzy membership functions," Fuzzy Sets Syst., vol. 103, no. 2, pp. 239-254, Apr. 1999.
    • (1999) Fuzzy Sets Syst , vol.103 , Issue.2 , pp. 239-254
    • Chen, M.S.1    Wang, S.W.2
  • 7
    • 0032655554 scopus 로고    scopus 로고
    • A proposal on reasoning methods in fuzzy rule-based classification systems
    • Jan
    • O. Cordon, M. J. Del Jesus, and F. Herrera, "A proposal on reasoning methods in fuzzy rule-based classification systems," Int. J. Approx. Reason., vol. 20, no. 1, pp. 21-45, Jan. 1999.
    • (1999) Int. J. Approx. Reason , vol.20 , Issue.1 , pp. 21-45
    • Cordon, O.1    Del Jesus, M.J.2    Herrera, F.3
  • 8
    • 33750723494 scopus 로고    scopus 로고
    • A multiobjective genetic learning process for joint feature selection and granularity and contexts learning in fuzzy rule-based classification systems
    • J. Casillas, O. Cordon, F. Herrera, and L. Magdalena, Eds. New York: Springer-Verlag
    • O. Cordon, M. J. Del Jesus, F. Herrera, L. Magdalena, and P. Villar, "A multiobjective genetic learning process for joint feature selection and granularity and contexts learning in fuzzy rule-based classification systems," in Interpretability Issues in Fuzzy Modeling, J. Casillas, O. Cordon, F. Herrera, and L. Magdalena, Eds. New York: Springer-Verlag, 2003, pp. 79-99.
    • (2003) Interpretability Issues in Fuzzy Modeling , pp. 79-99
    • Cordon, O.1    Del Jesus, M.J.2    Herrera, F.3    Magdalena, L.4    Villar, P.5
  • 10
    • 44949271432 scopus 로고
    • On fuzzy implication operators
    • Aug
    • J. C. Fodor, "On fuzzy implication operators," Fuzzy Sets Syst., vol. 42, no. 3, pp. 293-300, Aug. 1991.
    • (1991) Fuzzy Sets Syst , vol.42 , Issue.3 , pp. 293-300
    • Fodor, J.C.1
  • 11
    • 0035360372 scopus 로고    scopus 로고
    • Designing fuzzy inference systems from data: An interpretability-oriented review
    • Jun
    • S. Guillaume, "Designing fuzzy inference systems from data: An interpretability-oriented review," IEEE Trans. Fuzzy Syst., vol. 9, no. 3, pp. 426-443, Jun. 2001.
    • (2001) IEEE Trans. Fuzzy Syst , vol.9 , Issue.3 , pp. 426-443
    • Guillaume, S.1
  • 12
    • 3042547260 scopus 로고    scopus 로고
    • Generating an interpretable family of fuzzy partitions from data
    • Jun
    • S. Guillaume and B. Charnomordic, "Generating an interpretable family of fuzzy partitions from data," IEEE Trans. Fuzzy Syst., vol. 12, no. 3, pp. 324-335, Jun. 2004.
    • (2004) IEEE Trans. Fuzzy Syst , vol.12 , Issue.3 , pp. 324-335
    • Guillaume, S.1    Charnomordic, B.2
  • 13
    • 34548823478 scopus 로고    scopus 로고
    • Evolutionary multiobjective design of fuzzy rule-based systems
    • H. Ishibuchi, "Evolutionary multiobjective design of fuzzy rule-based systems," in Proc. IEEE Symp. Found. Comput. Intell., 2007, pp. 9-16.
    • (2007) Proc. IEEE Symp. Found. Comput. Intell , pp. 9-16
    • Ishibuchi, H.1
  • 14
    • 0035415473 scopus 로고    scopus 로고
    • Effect of rule weights in fuzzy rule-based classification systems
    • Aug
    • H. Ishibuchi and T. Nakashima, "Effect of rule weights in fuzzy rule-based classification systems," IEEE Trans. Fuzzy Syst., vol. 9, no. 4, pp. 506-515, Aug. 2001.
    • (2001) IEEE Trans. Fuzzy Syst , vol.9 , Issue.4 , pp. 506-515
    • Ishibuchi, H.1    Nakashima, T.2
  • 15
    • 0033329971 scopus 로고    scopus 로고
    • Improving the performance of fuzzy classifier systems for pattern classification problems with continuous attributes
    • Feb
    • H. Ischibuchi and T. Nakashima, "Improving the performance of fuzzy classifier systems for pattern classification problems with continuous attributes," IEEE Trans. Ind. Electron., vol. 46, no. 1, pp. 157-168, Feb. 1999.
    • (1999) IEEE Trans. Ind. Electron , vol.46 , Issue.1 , pp. 157-168
    • Ischibuchi, H.1    Nakashima, T.2
  • 16
    • 33751186914 scopus 로고    scopus 로고
    • Analysis of interpretability accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics based machine learning
    • H. Ishibuchi and Y. Nojima, "Analysis of interpretability accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics based machine learning," Int. J. Approx. Reason., vol. 44, pp. 4-31, 2007.
    • (2007) Int. J. Approx. Reason , vol.44 , pp. 4-31
    • Ishibuchi, H.1    Nojima, Y.2
  • 17
    • 0000919523 scopus 로고    scopus 로고
    • Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems
    • H. Ishibuchi, T. Murata, and I. B. Turksen, "Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems," Fuzzy Sets Syst., vol. 89, pp. 135-150, 1997.
    • (1997) Fuzzy Sets Syst , vol.89 , pp. 135-150
    • Ishibuchi, H.1    Murata, T.2    Turksen, I.B.3
  • 18
    • 0032597810 scopus 로고    scopus 로고
    • Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems
    • Oct
    • H. Ischibuchi, T. Nakashima, and T. Murata, "Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems," IEEE Trans. Syst. Man Cybern. B, Cybern., vol. 29, no. 5, pp. 601-618, Oct. 1999.
    • (1999) IEEE Trans. Syst. Man Cybern. B, Cybern , vol.29 , Issue.5 , pp. 601-618
    • Ischibuchi, H.1    Nakashima, T.2    Murata, T.3
  • 19
    • 0035426682 scopus 로고    scopus 로고
    • Three-objective genetics-based machine learning for linguistic rule extraction
    • H. Ischibuchi, T. Nakashima, and T. Murata, "Three-objective genetics-based machine learning for linguistic rule extraction," Inf. Sci., vol. 136, pp. 109-133, 2001.
    • (2001) Inf. Sci , vol.136 , pp. 109-133
    • Ischibuchi, H.1    Nakashima, T.2    Murata, T.3
  • 20
    • 0346781550 scopus 로고    scopus 로고
    • Fuzzy rule selection by multi objective genetic local search algorithms and rule evaluation measures in data mining
    • Jan
    • H. Ishibuchi and T. Yamamoto, "Fuzzy rule selection by multi objective genetic local search algorithms and rule evaluation measures in data mining," Fuzzy Sets Syst., vol. 141, pp. 59-88, Jan. 2004.
    • (2004) Fuzzy Sets Syst , vol.141 , pp. 59-88
    • Ishibuchi, H.1    Yamamoto, T.2
  • 21
    • 17444427096 scopus 로고    scopus 로고
    • Hybridization of fuzzy GBML approaches for pattern classification problems
    • Apr
    • H. Ischibuchi, T. Yamamoto, and T. Nakashima, "Hybridization of fuzzy GBML approaches for pattern classification problems," IEEE Trans. Syst. Man Cybern. B, Cybern., vol. 35, no. 2, pp. 359-365, Apr. 2005.
    • (2005) IEEE Trans. Syst. Man Cybern. B, Cybern , vol.35 , Issue.2 , pp. 359-365
    • Ischibuchi, H.1    Yamamoto, T.2    Nakashima, T.3
  • 22
    • 0033704546 scopus 로고    scopus 로고
    • Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability improvement
    • Apr
    • Y. Jin, "Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability improvement," IEEE Trans. Fuzzy Syst. vol. 8, no. 2, pp. 212-221, Apr. 2000.
    • (2000) IEEE Trans. Fuzzy Syst , vol.8 , Issue.2 , pp. 212-221
    • Jin, Y.1
  • 24
    • 33645138933 scopus 로고    scopus 로고
    • A robust design criterion for interpretable fuzzy models with uncertain data
    • Apr
    • M. Kumar, R. Stoll, and N. Stoll, "A robust design criterion for interpretable fuzzy models with uncertain data," IEEE Trans. Fuzzy Syst., vol. 14, no. 2, pp. 314-328, Apr. 2006.
    • (2006) IEEE Trans. Fuzzy Syst , vol.14 , Issue.2 , pp. 314-328
    • Kumar, M.1    Stoll, R.2    Stoll, N.3
  • 26
    • 34249723182 scopus 로고    scopus 로고
    • A novel generic Hebbian ordering-based fuzzy rule base reduction approach to Mamdani neuro-fuzzy system
    • Jun
    • F. Liu, C. Quek, and G. S. Ng, "A novel generic Hebbian ordering-based fuzzy rule base reduction approach to Mamdani neuro-fuzzy system," Neural Comput., vol. 19, pp. 1656-80, Jun. 2007.
    • (2007) Neural Comput , vol.19 , pp. 1656-1680
    • Liu, F.1    Quek, C.2    Ng, G.S.3
  • 28
    • 0031627851 scopus 로고    scopus 로고
    • How the learning of rule weights affects the interpretability of fuzzy systems
    • D. Nauck and R. Kruse, "How the learning of rule weights affects the interpretability of fuzzy systems," in Proc. IEEE Int. Conf. Fuzzy Syst., 1998, vol. 2, pp. 1235-1240.
    • (1998) Proc. IEEE Int. Conf. Fuzzy Syst , vol.2 , pp. 1235-1240
    • Nauck, D.1    Kruse, R.2
  • 29
    • 42649122303 scopus 로고    scopus 로고
    • Fuzzy classifier identification using decision tree and multiobjective evolutionary algorithms
    • P. Pulkkinen and H. Koivisto, "Fuzzy classifier identification using decision tree and multiobjective evolutionary algorithms," Int. J. Approx. Reason., pp. 526-43, 2008.
    • (2008) Int. J. Approx. Reason , pp. 526-543
    • Pulkkinen, P.1    Koivisto, H.2
  • 30
    • 0033280325 scopus 로고    scopus 로고
    • POPFNN-AAR(S), a pseudo outer-product based fuzzy neural network
    • Dec
    • C. Quek and R. W. Zhou, "POPFNN-AAR(S), a pseudo outer-product based fuzzy neural network," IEEE Trans. Syst. Man Cybern. B, Cybern., vol. 29, no. 6, pp. 859-870, Dec. 1999.
    • (1999) IEEE Trans. Syst. Man Cybern. B, Cybern , vol.29 , Issue.6 , pp. 859-870
    • Quek, C.1    Zhou, R.W.2
  • 31
    • 0035196019 scopus 로고    scopus 로고
    • The POP learning algorithms: Reducing work in identifying fuzzy rules
    • Dec
    • C. Quek and R. W. Zhou, "The POP learning algorithms: Reducing work in identifying fuzzy rules," Neural Netw., vol. 14, pp. 1431-45, Dec. 2001.
    • (2001) Neural Netw , vol.14 , pp. 1431-1445
    • Quek, C.1    Zhou, R.W.2
  • 32
    • 0035415950 scopus 로고    scopus 로고
    • Compact and transparent fuzzy models and classifiers through iterative complexity reduction
    • Aug
    • H. Roubos and M. Setnes, "Compact and transparent fuzzy models and classifiers through iterative complexity reduction," IEEE Trans. Fuzzy Syst., vol. 9, no. 4, pp. 516-524, Aug. 2001.
    • (2001) IEEE Trans. Fuzzy Syst , vol.9 , Issue.4 , pp. 516-524
    • Roubos, H.1    Setnes, M.2
  • 33
    • 14644433722 scopus 로고    scopus 로고
    • Designing and learning of adjustable quasi triangular norms with applications to neuro-fuzzy systems
    • Feb
    • L. Rutkowski and K. Cpalka, "Designing and learning of adjustable quasi triangular norms with applications to neuro-fuzzy systems," IEEE Trans. Fuzzy Syst., vol. 13, no. 1, pp. 140-151, Feb. 2005.
    • (2005) IEEE Trans. Fuzzy Syst , vol.13 , Issue.1 , pp. 140-151
    • Rutkowski, L.1    Cpalka, K.2
  • 34
    • 0037507277 scopus 로고    scopus 로고
    • Flexible neuro-fuzzy systems
    • May
    • L. Rutkowski and K. Cpalka, "Flexible neuro-fuzzy systems," IEEE Trans. Neural Netw., vol. 14, no. 3, pp. 554-574, May 2003.
    • (2003) IEEE Trans. Neural Netw , vol.14 , Issue.3 , pp. 554-574
    • Rutkowski, L.1    Cpalka, K.2
  • 35
    • 0034294243 scopus 로고    scopus 로고
    • GA-fuzzy modeling and classification: Complexity and performance
    • Oct
    • M. Setnes and H. Roubos, "GA-fuzzy modeling and classification: Complexity and performance," IEEE Trans. Fuzzy Syst., vol. 8, no. 5, pp. 509-522, Oct. 2000.
    • (2000) IEEE Trans. Fuzzy Syst , vol.8 , Issue.5 , pp. 509-522
    • Setnes, M.1    Roubos, H.2
  • 37
    • 42549104888 scopus 로고    scopus 로고
    • DCT-Yager FNN: A novel Yager-based fuzzy neural network with the discrete clustering technique
    • Apr
    • A. Singh, C. Quek, and S. Y. Cho, "DCT-Yager FNN: A novel Yager-based fuzzy neural network with the discrete clustering technique," IEEE Trans. Neural Netw., vol. 19, no. 4, pp. 625-44, Apr. 2008.
    • (2008) IEEE Trans. Neural Netw , vol.19 , Issue.4 , pp. 625-644
    • Singh, A.1    Quek, C.2    Cho, S.Y.3
  • 38
    • 33751249040 scopus 로고    scopus 로고
    • TWNFI - A transductive neuro-fuzzy inference system with weighted data normalization for personalized modeling
    • Q. Song and N. Kasabov, "TWNFI - A transductive neuro-fuzzy inference system with weighted data normalization for personalized modeling," Neural Netw., vol. 19, pp. 1591-1596, 2006.
    • (2006) Neural Netw , vol.19 , pp. 1591-1596
    • Song, Q.1    Kasabov, N.2
  • 39
    • 67349085948 scopus 로고    scopus 로고
    • A multi-objective cooperative coevolutionary algorithm for constructing accurate and interpretable fuzzy systems
    • X. Zong-Yi, H. Yuan-Long, Z. Yong, J. Li-Min, and H. Yuexian, "A multi-objective cooperative coevolutionary algorithm for constructing accurate and interpretable fuzzy systems," in Proc. IEEE Int. Conf. Fuzzy Syst., 2006, pp. 6964-6970.
    • (2006) Proc. IEEE Int. Conf. Fuzzy Syst , pp. 6964-6970
    • Zong-Yi, X.1    Yuan-Long, H.2    Yong, Z.3    Li-Min, J.4    Yuexian, H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.