-
1
-
-
0040573843
-
Analytic structure of two 1D-transport equations with nonlocal fluxes
-
Baker G., Li X., and Morlet A. Analytic structure of two 1D-transport equations with nonlocal fluxes. Physica D 91 (1996) 349-375
-
(1996)
Physica D
, vol.91
, pp. 349-375
-
-
Baker, G.1
Li, X.2
Morlet, A.3
-
2
-
-
34250136481
-
Remarks on the breakdown of smooth solutions for the 3-D Euler equations
-
Beale J.T., Kato T., and Majda A. Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Comm. Math. Phys. 94 1 (1984) 61-66
-
(1984)
Comm. Math. Phys.
, vol.94
, Issue.1
, pp. 61-66
-
-
Beale, J.T.1
Kato, T.2
Majda, A.3
-
3
-
-
16244382542
-
Finite time singularities in a 1D model of the quasi-geostrophic equation
-
Chae D., Córdoba A., Córdoba D., and Fontelos M.A. Finite time singularities in a 1D model of the quasi-geostrophic equation. Adv. Math. 194 1 (2005) 203-223
-
(2005)
Adv. Math.
, vol.194
, Issue.1
, pp. 203-223
-
-
Chae, D.1
Córdoba, A.2
Córdoba, D.3
Fontelos, M.A.4
-
4
-
-
84990556249
-
A simple one-dimensional model for the three-dimensional vorticity
-
Constantin P., Lax P., and Majda A. A simple one-dimensional model for the three-dimensional vorticity. Comm. Pure Appl. Math. 38 (1985) 715-724
-
(1985)
Comm. Pure Appl. Math.
, vol.38
, pp. 715-724
-
-
Constantin, P.1
Lax, P.2
Majda, A.3
-
5
-
-
0043172071
-
Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar
-
Constantin P., Majda A., and Tabak E. Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar. Nonlinearity 7 6 (1994) 1495-1533
-
(1994)
Nonlinearity
, vol.7
, Issue.6
, pp. 1495-1533
-
-
Constantin, P.1
Majda, A.2
Tabak, E.3
-
6
-
-
4544377751
-
A maximum principle applied to quasi-geostrophic equations
-
Córdoba A., and Córdoba D. A maximum principle applied to quasi-geostrophic equations. Comm. Math. Phys. 249 3 (2004) 511-528
-
(2004)
Comm. Math. Phys.
, vol.249
, Issue.3
, pp. 511-528
-
-
Córdoba, A.1
Córdoba, D.2
-
7
-
-
33745899606
-
Formation of singularities for a transport equation with nonlocal velocity
-
Córdoba A., Córdoba D., and Fontelos M.A. Formation of singularities for a transport equation with nonlocal velocity. Ann. of Math. (2) 162 3 (2005) 1377-1389
-
(2005)
Ann. of Math. (2)
, vol.162
, Issue.3
, pp. 1377-1389
-
-
Córdoba, A.1
Córdoba, D.2
Fontelos, M.A.3
-
8
-
-
33751328809
-
Integral inequalities for the Hilbert transform applied to a nonlocal transport equation
-
Córdoba A., Córdoba D., and Fontelos M.A. Integral inequalities for the Hilbert transform applied to a nonlocal transport equation. J. Math. Pures Appl. (9) 86 6 (2006) 529-540
-
(2006)
J. Math. Pures Appl. (9)
, vol.86
, Issue.6
, pp. 529-540
-
-
Córdoba, A.1
Córdoba, D.2
Fontelos, M.A.3
-
9
-
-
54949151971
-
-
H. Dong, Dissipative quasi-geostrophic equations in critical Sobolev spaces: Smoothing effect and global well-posedness, 2007, submitted for publication
-
H. Dong, Dissipative quasi-geostrophic equations in critical Sobolev spaces: Smoothing effect and global well-posedness, 2007, submitted for publication
-
-
-
-
10
-
-
50249090960
-
Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space
-
Dong H., and Du D. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete Contin. Dyn. Syst. 21 4 (2008) 1095-1101
-
(2008)
Discrete Contin. Dyn. Syst.
, vol.21
, Issue.4
, pp. 1095-1101
-
-
Dong, H.1
Du, D.2
-
11
-
-
54949154201
-
Finite time singularities for a class of generalized surface quasi-geostrophic equations
-
Dong H., and Li D. Finite time singularities for a class of generalized surface quasi-geostrophic equations. Proc. Amer. Math. Soc. 136 (2008) 2555-2563
-
(2008)
Proc. Amer. Math. Soc.
, vol.136
, pp. 2555-2563
-
-
Dong, H.1
Li, D.2
-
12
-
-
54949144051
-
-
H. Dong, D. Du, D. Li, Finite time singularities and global well-posedness for fractal Burgers' equation, Indiana Univ. Math. J., 2008, in press
-
H. Dong, D. Du, D. Li, Finite time singularities and global well-posedness for fractal Burgers' equation, Indiana Univ. Math. J., 2008, in press
-
-
-
-
13
-
-
33846785446
-
Global well-posedness for the critical 2D dissipative quasi-geostrophic equation
-
Kiselev A., Nazarov F., and Volberg A. Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 167 3 (2007) 445-453
-
(2007)
Invent. Math.
, vol.167
, Issue.3
, pp. 445-453
-
-
Kiselev, A.1
Nazarov, F.2
Volberg, A.3
-
14
-
-
54949125395
-
-
A. Kiselev, F. Nazarov, R. Shterenberg, Blow up and regularity for fractal Burgers equation, preprint
-
A. Kiselev, F. Nazarov, R. Shterenberg, Blow up and regularity for fractal Burgers equation, preprint
-
-
-
-
15
-
-
33747198457
-
Dissipative quasi-geostrophic equation for large initial data in the critical Sobolev space
-
Miura H. Dissipative quasi-geostrophic equation for large initial data in the critical Sobolev space. Comm. Math. Phys. 267 1 (2006) 141-157
-
(2006)
Comm. Math. Phys.
, vol.267
, Issue.1
, pp. 141-157
-
-
Miura, H.1
-
16
-
-
0038902238
-
Further properties of a continuum of model equations with globally defined flux
-
Morlet A. Further properties of a continuum of model equations with globally defined flux. J. Math. Anal. Appl. 221 (1998) 132-160
-
(1998)
J. Math. Anal. Appl.
, vol.221
, pp. 132-160
-
-
Morlet, A.1
-
17
-
-
0039080816
-
Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations
-
de Gruyter, Berlin
-
Runst T., and Sickel W. Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. de Gruyter Ser. Nonlinear Anal. Appl. vol. 3 (1996), de Gruyter, Berlin
-
(1996)
de Gruyter Ser. Nonlinear Anal. Appl.
, vol.3
-
-
Runst, T.1
Sickel, W.2
-
18
-
-
0242340484
-
On global solutions for the Constantin-Lax-Majda equation with a generalized viscosity term
-
Sakajo T. On global solutions for the Constantin-Lax-Majda equation with a generalized viscosity term. Nonlinearity 16 4 (2003) 1319-1328
-
(2003)
Nonlinearity
, vol.16
, Issue.4
, pp. 1319-1328
-
-
Sakajo, T.1
-
19
-
-
84990556355
-
Explicit solutions of the viscous model vorticity equation
-
Schochet S. Explicit solutions of the viscous model vorticity equation. Comm. Pure Appl. Math. 39 4 (1986) 531-537
-
(1986)
Comm. Pure Appl. Math.
, vol.39
, Issue.4
, pp. 531-537
-
-
Schochet, S.1
-
20
-
-
85157051538
-
-
E. Wegert, A.S. Vasudeva Murthy, Blow-up in a modified Constantin-Lax-Majda model for the vorticity equation, Z. Anal. Anwendungen 18 (2), 183-191
-
E. Wegert, A.S. Vasudeva Murthy, Blow-up in a modified Constantin-Lax-Majda model for the vorticity equation, Z. Anal. Anwendungen 18 (2), 183-191
-
-
-
-
21
-
-
35248823548
-
Remarks on the global regularity for the super-critical 2d dissipative quasi-geostrophic equation
-
Yu X. Remarks on the global regularity for the super-critical 2d dissipative quasi-geostrophic equation. J. Math. Anal. Appl. 339 1 (2008) 359-371
-
(2008)
J. Math. Anal. Appl.
, vol.339
, Issue.1
, pp. 359-371
-
-
Yu, X.1
|