메뉴 건너뛰기




Volumn 56, Issue 4, 2009, Pages 1108-1116

Find significant gene information based on changing points of microarray data

Author keywords

Feature optimization; Features extraction; Microarray data; Wavelet analysis

Indexed keywords

CROSS VALIDATION; DATA SETS; DATA SPACE; DETAIL COEFFICIENTS; FEATURE OPTIMIZATION; FEATURES EXTRACTION; GENE INFORMATION; HIGH-ORDER; LOCALIZED FEATURES; MICROARRAY DATA; THIRD LEVEL; WAVELET BASIS; WAVELET FEATURES; WAVELET SPACE;

EID: 67149136352     PISSN: 00189294     EISSN: None     Source Type: Journal    
DOI: 10.1109/TBME.2008.2009543     Document Type: Article
Times cited : (10)

References (24)
  • 1
    • 0038053156 scopus 로고    scopus 로고
    • New analytical techniques for the interpretation of microarray data
    • C. Campbell, "New analytical techniques for the interpretation of microarray data," Bioinformatics, vol. 19, p. 1045, 2003.
    • (2003) Bioinformatics , vol.19 , pp. 1045
    • Campbell, C.1
  • 3
    • 0036166439 scopus 로고    scopus 로고
    • Tumor classification by partial least squares using microarray gene expression data
    • V. N. Danh and M. R. David, "Tumor classification by partial least squares using microarray gene expression data," Bioinformatics, vol. 18, pp. 39-50, 2002.
    • (2002) Bioinformatics , vol.18 , pp. 39-50
    • Danh, V.N.1    David, M.R.2
  • 4
    • 0034533063 scopus 로고    scopus 로고
    • Computational methods for gene expression-based tumor classification
    • M. Xiong, L. Jin, W. Li, and E. Boerwinkle, "Computational methods for gene expression-based tumor classification," Biotechniques, vol. 29, pp. 1264-1270, 2000.
    • (2000) Biotechniques , vol.29 , pp. 1264-1270
    • Xiong, M.1    Jin, L.2    Li, W.3    Boerwinkle, E.4
  • 5
    • 0034948896 scopus 로고    scopus 로고
    • A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes
    • P. Baldi and A. D. Long, "A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes," Bionformatics, vol. 17, pp. 509-519, 2001.
    • (2001) Bionformatics , vol.17 , pp. 509-519
    • Baldi, P.1    Long, A.D.2
  • 6
    • 12344294601 scopus 로고    scopus 로고
    • BagBoosting for tumor classification with gene expression data
    • M. Dettling, "BagBoosting for tumor classification with gene expression data," Bioinformatics, vol. 20, pp. 3583-3593, 2004.
    • (2004) Bioinformatics , vol.20 , pp. 3583-3593
    • Dettling, M.1
  • 7
    • 7244225752 scopus 로고    scopus 로고
    • Discovery of significant rules for classifying cancer diagnosis data
    • J. Li, H. Liu, S. K. Ng, and L. Wong, "Discovery of significant rules for classifying cancer diagnosis data," Bioinformatics, vol. 19, pp. 93-102, 2003.
    • (2003) Bioinformatics , vol.19 , pp. 93-102
    • Li, J.1    Liu, H.2    Ng, S.K.3    Wong, L.4
  • 8
    • 2942596534 scopus 로고    scopus 로고
    • Ensemble machine learning on gene expression data for cancer classification
    • A. C. Tan and D. Gilbert, "Ensemble machine learning on gene expression data for cancer classification," Appl. Bioinf., vol. 2, pp. S75-S83, 2003.
    • (2003) Appl. Bioinf , vol.2
    • Tan, A.C.1    Gilbert, D.2
  • 9
    • 33747865502 scopus 로고    scopus 로고
    • Independent component analysis-based penalized discriminant method for tumor classification using gene expression data
    • D. S. Huang and C. H. Zheng, "Independent component analysis-based penalized discriminant method for tumor classification using gene expression data," Bioinformatics, vol. 22, pp. 1855-1862, 2006.
    • (2006) Bioinformatics , vol.22 , pp. 1855-1862
    • Huang, D.S.1    Zheng, C.H.2
  • 10
    • 7044286462 scopus 로고    scopus 로고
    • Nonlinear-probit gene classification using mutual-information and wavelet based feature selection
    • X. Zhou, X. Wang, and E. R. Dougherty, "Nonlinear-probit gene classification using mutual-information and wavelet based feature selection," Biol. Syst., vol. 12, pp. 371-386, 2004.
    • (2004) Biol. Syst , vol.12 , pp. 371-386
    • Zhou, X.1    Wang, X.2    Dougherty, E.R.3
  • 11
    • 50849091939 scopus 로고    scopus 로고
    • Wavelet feature selection for microarray data
    • Bethesda, MD
    • Y. Liu, "Wavelet feature selection for microarray data," in Proc. 3rd IEEE/NIH Life Sci. Syst. Appl. Workshop, Bethesda, MD, 2007, pp. 205-208.
    • (2007) Proc. 3rd IEEE/NIH Life Sci. Syst. Appl. Workshop , pp. 205-208
    • Liu, Y.1
  • 13
    • 35348844101 scopus 로고    scopus 로고
    • Cancer classification based on the 'fingerprint' of microarray data
    • Y. Liu, J. Shen, and J. Cheng, "Cancer classification based on the 'fingerprint' of microarray data," in Proc. 1st Int. Conf. Bioinf. Biomed. Eng., 2007, pp. 180-183.
    • (2007) Proc. 1st Int. Conf. Bioinf. Biomed. Eng , pp. 180-183
    • Liu, Y.1    Shen, J.2    Cheng, J.3
  • 14
    • 47649094519 scopus 로고    scopus 로고
    • Detect key genes information in classification of microarray data
    • doi:10.1155/2008/612397
    • Y. Liu, "Detect key genes information in classification of microarray data," EURASIP J. Adv. Signal Process., vol. 2008, pp. 612397-1-612397-10, 2008 (doi:10.1155/2008/612397).
    • (2008) EURASIP J. Adv. Signal Process , vol.2008
    • Liu, Y.1
  • 15
    • 58149468839 scopus 로고    scopus 로고
    • Wavelet feature extraction for high-dimensional microarray data
    • Y. Liu, "Wavelet feature extraction for high-dimensional microarray data,"Neurocomputing, vol. 72, pp. 985-990, 2009.
    • (2009) Neurocomputing , vol.72 , pp. 985-990
    • Liu, Y.1
  • 16
    • 67149120460 scopus 로고    scopus 로고
    • A. Grossmann and J. Morlet, Decomposition of Hardy functions into square integrable wavelets of constant shape SIAM, J. Math. Anal., 15, pp. 723-736, 1984.
    • A. Grossmann and J. Morlet, "Decomposition of Hardy functions into square integrable wavelets of constant shape SIAM," J. Math. Anal., vol. 15, pp. 723-736, 1984.
  • 17
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: The wavelet representation
    • Jul
    • S. Mallat, "A theory for multiresolution signal decomposition: The wavelet representation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 7, pp. 674-693, Jul. 1989.
    • (1989) IEEE Trans. Pattern Anal. Mach. Intell , vol.11 , Issue.7 , pp. 674-693
    • Mallat, S.1
  • 18
    • 84990575058 scopus 로고
    • Orthonormal bases of compactly supported wavelets
    • I. Daubechies, "Orthonormal bases of compactly supported wavelets," Commun. Pure Appl. Math., vol. 41, pp. 909-996, 1988.
    • (1988) Commun. Pure Appl. Math , vol.41 , pp. 909-996
    • Daubechies, I.1
  • 19
    • 19044391072 scopus 로고    scopus 로고
    • D. Singh, P. G. Febbo1, K. Ross, D. G. Jackson, J. Manola, C. Ladd, P. Tamayo, A. A. Renshaw, A. V. D'Amico, J. P. Richie, E. S. Lander, M. Loda, P. W. Kantoff, T. R. Golub, and W. R. Sellers, Gene expression correlates of clinical prostate cancer behavior, Cancer Cell,1, pp. 203-209, 2002.
    • D. Singh, P. G. Febbo1, K. Ross, D. G. Jackson, J. Manola, C. Ladd, P. Tamayo, A. A. Renshaw, A. V. D'Amico, J. P. Richie, E. S. Lander, M. Loda, P. W. Kantoff, T. R. Golub, and W. R. Sellers, "Gene expression correlates of clinical prostate cancer behavior," Cancer Cell,vol.1, pp. 203-209, 2002.
  • 20
    • 0036735386 scopus 로고    scopus 로고
    • Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma
    • G. J. Gordon, R. V. Jensen, L. L. Hsiao, S. R. Gullans, J. E. Blumenstock, S. Ramaswamy, W. G. Richards, D. J. Sugarbaker, and R. Bueno, "Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma," Cancer Res., vol. 62, pp. 4963-4967, 2002.
    • (2002) Cancer Res , vol.62 , pp. 4963-4967
    • Gordon, G.J.1    Jensen, R.V.2    Hsiao, L.L.3    Gullans, S.R.4    Blumenstock, J.E.5    Ramaswamy, S.6    Richards, W.G.7    Sugarbaker, D.J.8    Bueno, R.9
  • 23
    • 0037460957 scopus 로고    scopus 로고
    • PCA disjoint models for multi- class cancer analysis using gene expression data
    • S. Bicciato, A. Luchini, and C. Di Bello, "PCA disjoint models for multi- class cancer analysis using gene expression data," Bioinformatics, vol. 19, pp. 571-578, 2003.
    • (2003) Bioinformatics , vol.19 , pp. 571-578
    • Bicciato, S.1    Luchini, A.2    Di Bello, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.