메뉴 건너뛰기




Volumn 8, Issue 4, 2009, Pages 453-464

A tolerance rough set based semantic clustering method for web search results

Author keywords

Part of speech tagging; Rough set theory; Search results clustering; Semantic similarity; Web mining

Indexed keywords

CLUSTER CONTENT; CLUSTER DOCUMENTS; CONTEXT-WORD; EMPIRICAL EVALUATIONS; PART-OF-SPEECH TAGGING; ROUGH-SET BASED; SEARCH RESULTS; SEARCH RESULTS CLUSTERING; SEMANTIC CLUSTERING; SEMANTIC SIMILARITY; WEB MINING; WEB SEARCHES;

EID: 67149123668     PISSN: 18125638     EISSN: 18125646     Source Type: Journal    
DOI: 10.3923/itj.2009.453.464     Document Type: Article
Times cited : (7)

References (34)
  • 1
    • 84872146806 scopus 로고    scopus 로고
    • Feature selection with rough sets for web page classification
    • An, A., Y. Huang, X. Huang and N. Cercone, 2004. Feature selection with rough sets for web page classification. Trans. Rough Sets, 2: 1-13.
    • (2004) Trans. Rough Sets , vol.2 , pp. 1-13
    • An, A.1    Huang, Y.2    Huang, X.3    Cercone, N.4
  • 2
    • 84936824188 scopus 로고
    • Word association norms, mutual information and lexicography
    • Church, K. and P. Hanks, 1990. Word association norms, mutual information and lexicography. Comput. Linguist, 16: 22-29.
    • (1990) Comput. Linguist , vol.16 , pp. 22-29
    • Church, K.1    Hanks, P.2
  • 5
    • 85055298348 scopus 로고
    • Accurate methods for the statistics of surprise and coincidence
    • Dunning, T., 1993. Accurate methods for the statistics of surprise and coincidence. Comput. Linguist, 19: 61-74.
    • (1993) Comput. Linguist , vol.19 , pp. 61-74
    • Dunning, T.1
  • 7
    • 67149132369 scopus 로고    scopus 로고
    • A Rough Set Approach to Information Retrieval
    • Polkowski, L. and A. Skowron Eds, Physica-Verlag, USA, ISBN: 978-3790811209, pp
    • Funakoshi, K. and T. Ho, 1998. A Rough Set Approach to Information Retrieval. In: Rough Sets in Knowledge Discovery, Polkowski, L. and A. Skowron (Eds.). Physica-Verlag, USA., ISBN: 978-3790811209, pp: 166-177.
    • (1998) Rough Sets in Knowledge Discovery , pp. 166-177
    • Funakoshi, K.1    Ho, T.2
  • 9
    • 0008474051 scopus 로고    scopus 로고
    • Information retrieval using rough sets
    • Ho, T.B. and K. Funakoshi, 1998. Information retrieval using rough sets. J. Japan Soc. Artif. Intell., 13: 424-433.
    • (1998) J. Japan Soc. Artif. Intell , vol.13 , pp. 424-433
    • Ho, T.B.1    Funakoshi, K.2
  • 10
    • 0036471411 scopus 로고    scopus 로고
    • Nonhierarchical document clustering based on a tolerance rough set model
    • Ho, T.B. and N.B. Nguyen, 2002. Nonhierarchical document clustering based on a tolerance rough set model. Int. J. Intell. Syst, 17: 199-212.
    • (2002) Int. J. Intell. Syst , vol.17 , pp. 199-212
    • Ho, T.B.1    Nguyen, N.B.2
  • 13
    • 67149145461 scopus 로고    scopus 로고
    • Discovery, Sept. 13-16, Lyon, France, pp: 458-463. Kummamuru, K., R. Lotlikar, S. Roy, K. Singal and
    • Discovery, Sept. 13-16, Lyon, France, pp: 458-463. Kummamuru, K., R. Lotlikar, S. Roy, K. Singal and
  • 14
    • 19944406145 scopus 로고    scopus 로고
    • A hierarchical monothetic document clustering algorithm for summarization and browsing search results
    • May 17-20, ACMNew York, USA, pp
    • R. Krishnapuram, 2004. A hierarchical monothetic document clustering algorithm for summarization and browsing search results. Proceedings of the 13th International Conference on World Wide Web, May 17-20, ACMNew York, USA., pp: 658-665.
    • (2004) Proceedings of the 13th International Conference on World Wide Web , pp. 658-665
    • Krishnapuram, R.1
  • 15
    • 0000600219 scopus 로고    scopus 로고
    • A solution to Plato's problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge
    • Landauer, T. and S. Dumais, 1997. A solution to Plato's problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychol. Rev., 104: 211-240.
    • (1997) Psychol. Rev , vol.104 , pp. 211-240
    • Landauer, T.1    Dumais, S.2
  • 17
  • 19
    • 34248206790 scopus 로고    scopus 로고
    • A new algorithm for clustering search results
    • Mecca, G., S. Raunich and A. Pappalardo, 2007. A new algorithm for clustering search results. Data Knowl. Eng., 62: 504-522.
    • (2007) Data Knowl. Eng , vol.62 , pp. 504-522
    • Mecca, G.1    Raunich, S.2    Pappalardo, A.3
  • 20
    • 67149142381 scopus 로고    scopus 로고
    • Miller, G, R. Beckwith, C. Fellbaum, D. Gross and
    • Miller, G., R. Beckwith, C. Fellbaum, D. Gross and
  • 21
    • 34248833974 scopus 로고
    • Introduction to word Net: An on-line lexical database
    • K. Miller, 1990. Introduction to word Net: An on-line lexical database. Int. J. Lexicography, 3: 235-244.
    • (1990) Int. J. Lexicography , vol.3 , pp. 235-244
    • Miller, K.1
  • 22
    • 84931059008 scopus 로고
    • Contextual correlates of semantic similarity
    • Miller, G. and W. Charles, 1991. Contextual correlates of semantic similarity. Lang. Cogn. Proc, 6: 1-28.
    • (1991) Lang. Cogn. Proc , vol.6 , pp. 1-28
    • Miller, G.1    Charles, W.2
  • 24
    • 34548067604 scopus 로고    scopus 로고
    • Overlapping clustering method using local and global importance of feature terms at NTCIR-4 Web Task
    • Ohta, M., H. Narita and S. Ohno, 2004. Overlapping clustering method using local and global importance of feature terms at NTCIR-4 Web Task. Working Notes NTCIR, 4: 37-44.
    • (2004) Working Notes NTCIR , vol.4 , pp. 37-44
    • Ohta, M.1    Narita, H.2    Ohno, S.3
  • 30
    • 33746613275 scopus 로고    scopus 로고
    • Porter, M., 2006. An algorithm for suffix stripping. Program: Electron. Lib. Inf. Syst, 40: 211-218.
    • Porter, M., 2006. An algorithm for suffix stripping. Program: Electron. Lib. Inf. Syst, 40: 211-218.
  • 31
    • 0030217715 scopus 로고    scopus 로고
    • Skowron, A. and J. Stepaniuk, 1996. Tolerance approximation spaces. Fundam. Infor., 27: 245-253.
    • Skowron, A. and J. Stepaniuk, 1996. Tolerance approximation spaces. Fundam. Infor., 27: 245-253.
  • 33
    • 0033294891 scopus 로고    scopus 로고
    • Grouper: A dynamic clustering interface to Web search results
    • Zamir, O. and O. Etzioni, 1999. Grouper: A dynamic clustering interface to Web search results. Comput. Networks, 31: 1361-1374.
    • (1999) Comput. Networks , vol.31 , pp. 1361-1374
    • Zamir, O.1    Etzioni, O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.