메뉴 건너뛰기




Volumn , Issue , 2008, Pages 323-332

A robust discriminative termWeighting based linear discriminant method for text classification

Author keywords

[No Author keywords available]

Indexed keywords

APPLICATION AREA; APPLICATION DOMAINS; CLASSIFICATION METHODS; DATA SETS; EMAIL FILTERING; EMPIRICAL EVIDENCE; FEATURE SPACE; LINEAR DISCRIMINANT FUNCTIONS; LINEAR DISCRIMINANTS; LINEAR DISCRIMINATION; SMALL TRAINING; TERM WEIGHTING; TESTING SETS; TEXT CLASSIFICATION; TEXT CLASSIFICATION METHODS; THREE-TERM; TWO-DIMENSIONAL FEATURES;

EID: 67049162815     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2008.26     Document Type: Conference Paper
Times cited : (18)

References (30)
  • 4
    • 67049145111 scopus 로고    scopus 로고
    • Using kullback-leibler distance for text categorization
    • Springer
    • B. Bigi. Using kullback-leibler distance for text categorization. In Proceedings of ECIR. Springer, 2003.
    • (2003) Proceedings of ECIR
    • Bigi, B.1
  • 5
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • PII S0004370297000635
    • A.L. Blum and P. Langley. Selection of relevant features and examples in machine learning. Artificial Intelligence, pages 245-271, 1997. (Pubitemid 127401106)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 8
    • 0037998887 scopus 로고    scopus 로고
    • Supervised term weighting for automated text categorization
    • Melbourne, US, ACM Press, New York, US
    • Franca Debole and Fabrizio Sebastiani. Supervised term weighting for automated text categorization. In Proceedings of SAC-03, 18th ACM Symposium on Applied Computing, pages 784-788, Melbourne, US, 2003. ACM Press, New York, US.
    • (2003) Proceedings of SAC-03, 18th ACM Symposium on Applied Computing , pp. 784-788
    • Debole, F.1    Sebastiani, F.2
  • 9
    • 2942723846 scopus 로고    scopus 로고
    • A divisive information theoretic feature clustering algorithm for text classification
    • I.S. Dhillon, S. Mallela, and R. Kumar. A divisive information theoretic feature clustering algorithm for text classification. Journal of Machine Learning Research, 3:1265-1287, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1265-1287
    • Dhillon, I.S.1    Mallela, S.2    Kumar, R.3
  • 11
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • G. Forman. An extensive empirical study of feature selection metrics for text classification. Journal ofMachine Learning Research, pages 1289-1305, 2003.
    • (2003) Journal ofMachine Learning Research , pp. 1289-1305
    • Forman, G.1
  • 13
    • 0029372769 scopus 로고
    • Methods for combining experts' probability assessments
    • R.A. Jacobs. Methods for combining experts' probability assessments. Neural Computation, 7:867-888, 1995.
    • (1995) Neural Computation , vol.7 , pp. 867-888
    • Jacobs, R.A.1
  • 17
    • 36849020505 scopus 로고    scopus 로고
    • Raising the baseline for highprecision text classifiers
    • A. Kolcz and W. Yih. Raising the baseline for highprecision text classifiers. In Proceedings of KDD 2007, 2007.
    • (2007) Proceedings of KDD 2007
    • Kolcz, A.1    Yih, W.2
  • 18
    • 84876811202 scopus 로고    scopus 로고
    • Rcv1: A new benchmark collection for text categorization research
    • D.D. Lewis, Y. Yang, T.G. Rose, and F. Li. Rcv1: A new benchmark collection for text categorization research. J. Mach. Learn. Res., 5:361-397, 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 361-397
    • Lewis, D.D.1    Yang, Y.2    Rose, T.G.3    Li, F.4
  • 27
    • 0003862399 scopus 로고
    • Term weighting approaches in automated text retrieval
    • Dept. of Computer Science, Cornell University
    • G. Salton and C. Buckley. Term weighting approaches in automated text retrieval. Technical Report 87-881, Dept. of Computer Science, Cornell University, 1987.
    • (1987) Technical Report 87-881
    • Salton, G.1    Buckley, C.2
  • 28
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • F. Sebastiani. Machine learning in automated text categorization. ACM Computing Surveys, 34(1):1-47, 2002.
    • (2002) ACM Computing Surveys , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 29
    • 36549012987 scopus 로고    scopus 로고
    • An evaluation of naive bayes variants in content-based learning for spam filtering
    • A. K. Seewald. An evaluation of naive bayes variants in content-based learning for spam filtering. Intelligent Data Analysis, 11(5):497-524, 2007.
    • (2007) Intelligent Data Analysis , vol.11 , Issue.5 , pp. 497-524
    • Seewald, A.K.1
  • 30
    • 12744250266 scopus 로고    scopus 로고
    • An evaluation of statistical spam filtering techniques
    • DOI 10.1145/1039621.1039625, Computer Processing of Oriental Languages
    • L. Zhang, J. Zhu, and T. Yao. An evaluation of statistical spam filtering techniques. ACM Transactions on Asian Language Information Processing (TALIP), 3(4):243-269, 2004. (Pubitemid 40155221)
    • (2004) ACM Transactions on Asian Language Information Processing , vol.3 , Issue.4 , pp. 243-269
    • Zhang, L.E.1    Zhu, J.2    Yao, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.