메뉴 건너뛰기




Volumn , Issue , 2006, Pages 91-98

Learning the tree augmented Naive Bayes classifier from incomplete datasets

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION TASKS; DECISION AIDS; EM ALGORITHMS; NAIVE BAYES; NAIVE BAYES CLASSIFIERS; PARAMETER LEARNING; TREE AUGMENTED NAIVE BAYES CLASSIFIERS;

EID: 67049127666     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (11)

References (26)
  • 1
    • 84874743878 scopus 로고    scopus 로고
    • Predictive neural networks for traffic disturbance detection in the telephone network
    • Lille, France
    • Y. Bennani and F. Bossaert. 1996. Predictive neural networks for traffic disturbance detection in the telephone network. In Proceedings of IMACS-CESA'96, page xx, Lille, France.
    • (1996) Proceedings of IMACS-CESA'96
    • Bennani, Y.1    Bossaert, F.2
  • 2
    • 0042883436 scopus 로고    scopus 로고
    • Efficient Approximation for the Marginal Likelihood of Incomplete Data given a Bayesian Network
    • Morgan Kaufmann
    • D. Chickering and D. Heckerman. 1996. Efficient Approximation for the Marginal Likelihood of Incomplete Data given a Bayesian Network. In UAI'96, pages 158-168. Morgan Kaufmann.
    • (1996) UAI'96 , pp. 158-168
    • Chickering, D.1    Heckerman, D.2
  • 5
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • C.K. Chow and C.N. Liu. 1968. Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14(3):462-467.
    • (1968) IEEE Transactions on Information Theory , vol.14 , Issue.3 , pp. 462-467
    • Chow, C.K.1    Liu, C.N.2
  • 9
    • 0031269184 scopus 로고    scopus 로고
    • On the optimal-ity of the simple bayesian classifier under zero-one loss
    • P. Domingos and M. Pazzani. 1997. On the optimal-ity of the simple bayesian classifier under zero-one loss. Machine Learning, 29:103-130.
    • (1997) Machine Learning , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 11
    • 0001586968 scopus 로고    scopus 로고
    • Learning belief networks in the presence of missing values and hidden variables
    • Morgan Kaufmann
    • N. Friedman. 1997. Learning belief networks in the presence of missing values and hidden variables. In Proceedings of the 14th International Conference on Machine Learning, pages 125-133. Morgan Kaufmann.
    • (1997) Proceedings of the 14th International Conference on Machine Learning , pp. 125-133
    • Friedman, N.1
  • 12
    • 0000854197 scopus 로고    scopus 로고
    • The bayesian structural em algorithm
    • Gregory F. Cooper and Serafín Moral, editors San Francisco, July. Morgan Kaufmann
    • N. Friedman. 1998. The bayesian structural EM algorithm. In Gregory F. Cooper and Serafín Moral, editors, Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI-98), pages 129-138, San Francisco, July. Morgan Kaufmann.
    • (1998) Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI-98) , pp. 129-138
    • Friedman, N.1
  • 14
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • November
    • S. Geman and D. Geman. 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6):721-741, November.
    • (1984) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.6 , Issue.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 16
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • D. Heckerman, D. Geiger, and M. Chickering. 1995. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20:197-243.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, M.3
  • 17
    • 58149210716 scopus 로고
    • The em algorithm for graphical association models with missing data
    • S. Lauritzen. 1995. The EM algorithm for graphical association models with missing data. Computational Statistics and Data Analysis, 19:191-201.
    • (1995) Computational Statistics and Data Analysis , vol.19 , pp. 191-201
    • Lauritzen, S.1
  • 21
    • 0036532762 scopus 로고    scopus 로고
    • Learning recursive bayesian multinets for data clustering by means of constructive induction
    • J.M. Peña, J. Lozano, and P. Larrañaga. 2002. Learning recursive bayesian multinets for data clustering by means of constructive induction. Machine Learning, 47:1:63-90.
    • (2002) Machine Learning , vol.47 , Issue.1 , pp. 63-90
    • Peña, J.M.1    Lozano, J.2    Larrañaga, P.3
  • 22
    • 0003250080 scopus 로고    scopus 로고
    • Parameter estimation in Bayesian networks from incomplete databases
    • M. Ramoni and P. Sebastiani. 1998. Parameter estimation in Bayesian networks from incomplete databases. Intelligent Data Analysis, 2:139-160.
    • (1998) Intelligent Data Analysis , vol.2 , pp. 139-160
    • Ramoni, M.1    Sebastiani, P.2
  • 23
    • 0043198674 scopus 로고    scopus 로고
    • Robust learning with missing data
    • M. Ramoni and P. Sebastiani. 2000. Robust learning with missing data. Machine Learning, 45:147-170.
    • (2000) Machine Learning , vol.45 , pp. 147-170
    • Ramoni, M.1    Sebastiani, P.2
  • 24
    • 0017133178 scopus 로고
    • Inference and missing data
    • D.B. Rubin. 1976. Inference and missing data. Biometrika, 63:581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 26
    • 84986980101 scopus 로고
    • Sequential updating of conditional probabilities on directed graphical structures
    • D. J. Spiegelhalter and S. L. Lauritzen. 1990. Sequential updating of conditional probabilities on directed graphical structures. Networks, 20:579-605.
    • (1990) Networks , vol.20 , pp. 579-605
    • Spiegelhalter, D.J.1    Lauritzen, S.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.