메뉴 건너뛰기




Volumn 29, Issue 3, 2009, Pages 34-46

Ensemble Kalman Filter: Application to meteorological data assimilation

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION METHODS; ATMOSPHERIC MODELING; DATA ASSIMILATION; EQUATIONS; PREDICTIVE MODELS;

EID: 66849104077     PISSN: 1066033X     EISSN: None     Source Type: Journal    
DOI: 10.1109/MCS.2009.932225     Document Type: Article
Times cited : (30)

References (107)
  • 2
  • 13
    • 0001157746 scopus 로고
    • On the differential equations satisfied by the conditional probability densities of Markov processes with applications
    • H. J. Kushner, “On the differential equations satisfied by the conditional probability densities of Markov processes with applications,” SIAM J. Control, vol. 2, pp. 106–119,1962.
    • (1962) SIAM J. Control , vol.2 , pp. 106-119
    • Kushner, H.J.1
  • 15
    • 0019660565 scopus 로고
    • Exact finite dimensional filter for certain diffusions with nonlinear drift
    • V. Benes, “Exact finite dimensional filter for certain diffusions with nonlinear drift,” Stochastics, vol. 5, pp. 65–92,1981.
    • (1981) Stochastics , vol.5 , pp. 65-92
    • Benes, V.1
  • 16
    • 0002659655 scopus 로고
    • New exact nonlinear filters
    • J. C. Spall, Ed. New York: Marcel Dekker
    • F. E. Daum, “New exact nonlinear filters,” in Bayesian Analysis of Time Series and Dynamic Models, J. C. Spall, Ed. New York: Marcel Dekker, 1988, pp. 199–226.
    • (1988) Bayesian Analysis of Time Series and Dynamic Models , pp. 199-226
    • Daum, F.E.1
  • 17
    • 0039799003 scopus 로고
    • Discrete Galerkin approximations to nonlinear filtering solution
    • J. F. Bennaton, “Discrete Galerkin approximations to nonlinear filtering solution,” J. Math. Anal. Appl., vol. 110, pp. 364–383,1985.
    • (1985) J. Math. Anal. Appl. , vol.110 , pp. 364-383
    • Bennaton, J.F.1
  • 18
    • 0024882115 scopus 로고
    • Time discretization of nonlinear filtering equations
    • F. LeGland, “Time discretization of nonlinear filtering equations,” in Proc. 28th Decision and Control Conf., 1989, pp. 2601–2606.
    • (1989) Proc. 28th Decision and Control Conf. , pp. 2601-2606
    • LeGland, F.1
  • 19
    • 84874286884 scopus 로고
    • Monte Carlo techniques to estimate the conditional expectation in multi-stage nonlinear filtering
    • J. E. Handschin and D. Q. Mayne, “Monte Carlo techniques to estimate the conditional expectation in multi-stage nonlinear filtering,” Int. J. Control, vol. 9, pp. 547–559,1969.
    • (1969) Int. J. Control , vol.9 , pp. 547-559
    • Handschin, J.E.1    Mayne, D.Q.2
  • 21
    • 0028193070 scopus 로고
    • Sequential data assimilation with nonlinear quasi-geo-strophic model using Monte Carlo methods for forecast error statistics
    • G. Evensen, “Sequential data assimilation with nonlinear quasi-geo-strophic model using Monte Carlo methods for forecast error statistics,” J. Geophys. Res., vol. 99, pp. 10143–10162,1994.
    • (1994) J. Geophys. Res. , vol.99 , pp. 10143-10162
    • Evensen, G.1
  • 23
    • 0030304310 scopus 로고    scopus 로고
    • Monte Carlo filter and smoother for non-Gaussian nonlinear state space models
    • G. Kitagawa, “Monte Carlo filter and smoother for non-Gaussian nonlinear state space models,” J. Comput. Graph. Stat., vol. 5, pp. 1–25,1996.
    • (1996) J. Comput. Graph. Stat. , vol.5 , pp. 1-25
    • Kitagawa, G.1
  • 24
    • 0033723743 scopus 로고    scopus 로고
    • A new method for the nonlinear transformation of mean and covariances in filters and estimators
    • S. Julier, J. Uhlmann, and H. F. Durrant-Whyte “A new method for the nonlinear transformation of mean and covariances in filters and estimators,” IEEE Trans. Automat. Contr., vol. 45, pp. 477–482, 2002.
    • (2002) IEEE Trans. Automat. Contr. , vol.45 , pp. 477-482
    • Julier, S.1    Uhlmann, J.2    Durrant-Whyte, H.F.3
  • 25
    • 0027580559 scopus 로고
    • Novel approach to nonlinear/non-Gaussian Bayesian state estimation
    • N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to nonlinear/non-Gaussian Bayesian state estimation,” Proc. Inst. Elec. Eng., F, vol. 140, pp. 107–113,1993.
    • (1993) Proc. Inst. Elec. Eng., F , vol.140 , pp. 107-113
    • Gordon, N.J.1    Salmond, D.J.2    Smith, A.F.M.3
  • 30
    • 0000241853 scopus 로고
    • Deterministic nonperiodic flow
    • E. Lorenz, “Deterministic nonperiodic flow,” J. Atmos. Sci., vol. 20, pp. 130–141,1963.
    • (1963) J. Atmos. Sci. , vol.20 , pp. 130-141
    • Lorenz, E.1
  • 31
    • 0033368923 scopus 로고    scopus 로고
    • The skill of ensemble prediction systems
    • F. Atger, “The skill of ensemble prediction systems,” Month. Weather Rev., vol. 127, pp. 1941–1953,1999.
    • (1999) Month. Weather Rev. , vol.127 , pp. 1941-1953
    • Atger, F.1
  • 32
    • 0033825565 scopus 로고    scopus 로고
    • Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems
    • D. J. Stensrud, J.-W. Bao, and T. T. Warner, “Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems,” Month. Weather Rev., vol. 128, pp. 2077–2107,2000.
    • (2000) Month. Weather Rev. , vol.128 , pp. 2077-2107
    • Stensrud, D.J.1    Bao, J.-W.2    Warner, T.T.3
  • 33
    • 0018676012 scopus 로고
    • Probabilistic temperature forecasts: The case for an operational program
    • A. H. Murphy and R. L. Winkler, “Probabilistic temperature forecasts: The case for an operational program,” Bull. Amer. Meteorol. Soc., vol. 60, pp. 12–19,1979.
    • (1979) Bull. Amer. Meteorol. Soc. , vol.60 , pp. 12-19
    • Murphy, A.H.1    Winkler, R.L.2
  • 34
    • 0029772167 scopus 로고    scopus 로고
    • Selection of initial conditions for ensemble forecasts in a simple perfect model framework
    • J. L. Anderson, “Selection of initial conditions for ensemble forecasts in a simple perfect model framework,” J. Atmos. Sci., vol. 53, pp. 22–36,1996.
    • (1996) J. Atmos. Sci. , vol.53 , pp. 22-36
    • Anderson, J.L.1
  • 36
    • 33748658227 scopus 로고    scopus 로고
    • Comparison of error breeding, singular vectors, random perturbations and ensemble Kalman filter perturbation strategies on a simple model
    • N. E. Bowler “Comparison of error breeding, singular vectors, random perturbations and ensemble Kalman filter perturbation strategies on a simple model,” Tellus A, vol. 58, pp. 538–548, 2006.
    • (2006) Tellus A , vol.58 , pp. 538-548
    • Bowler, N.E.1
  • 38
    • 0032860565 scopus 로고    scopus 로고
    • A physical formulation of atmospheric transmittances for the massive assimilation of satellite infrared radiances
    • L. Garand, D. S. Turner, C. Chouinard, and J. Halle, “A physical formulation of atmospheric transmittances for the massive assimilation of satellite infrared radiances,” J. Appl. Meteorol., vol. 38, pp. 541–554,1999.
    • (1999) J. Appl. Meteorol. , vol.38 , pp. 541-554
    • Garand, L.1    Turner, D.S.2    Chouinard, C.3    Halle, J.4
  • 39
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • R. E. Kalman, “A new approach to linear filtering and prediction problems,” Trans. ASME, J. Basic Eng. D, vol. 82, pp. 35–45,1960.
    • (1960) Trans. ASME, J. Basic Eng. D , vol.82 , pp. 35-45
    • Kalman, R.E.1
  • 40
    • 85024423711 scopus 로고
    • New results in linear filtering and prediction theory
    • R. E. Kalman, and R. S. Bucy, “New results in linear filtering and prediction theory,” Trans. ASME, J. Basic Eng. D, vol. 83, pp. 95–108,1961.
    • (1961) Trans. ASME, J. Basic Eng. D , vol.83 , pp. 95-108
    • Kalman, R.E.1    Bucy, R.S.2
  • 41
    • 0016033438 scopus 로고
    • A view of three decades of linear filtering theory
    • T. Kailath, “A view of three decades of linear filtering theory,” IEEE Trans. Inform. Theory, vol. 20, pp. 146–181,1974.
    • (1974) IEEE Trans. Inform. Theory , vol.20 , pp. 146-181
    • Kailath, T.1
  • 44
    • 0024198837 scopus 로고
    • PIPs and POPs: Reduction of complex dynamical systems using principal interaction and oscillation patterns
    • K. Hasselmann, “PIPs and POPs: Reduction of complex dynamical systems using principal interaction and oscillation patterns,” J. Geophys. Res., vol. 93 (D9), pp. 11015–11021,1988.
    • (1988) J. Geophys. Res. , vol.93 , Issue.D9 , pp. 11015-11021
    • Hasselmann, K.1
  • 45
    • 0035359969 scopus 로고    scopus 로고
    • Optimally persistent patterns in time-varying fields
    • T. DelSole “Optimally persistent patterns in time-varying fields,” J. Atmos. Sci., vol. 58, pp. 1341–1356, 2001.
    • (2001) J. Atmos. Sci. , vol.58 , pp. 1341-1356
    • DelSole, T.1
  • 48
    • 0030477122 scopus 로고    scopus 로고
    • Generalized adjoint for physical processes with parameterized discontinuities—Part I: Basic issues and heuristic examples
    • Q. Xu, “Generalized adjoint for physical processes with parameterized discontinuities—Part I: Basic issues and heuristic examples,” J. Atmos. Sci., vol. 53, pp. 1123–1142,1996.
    • (1996) J. Atmos. Sci. , vol.53 , pp. 1123-1142
    • Xu, Q.1
  • 49
    • 0344069504 scopus 로고    scopus 로고
    • Generalized adjoint for physical processes with parameterized discontinuities—Part VI: Minimization problems in multidimensional space
    • Q. Xu and J. Gao, “Generalized adjoint for physical processes with parameterized discontinuities—Part VI: Minimization problems in multidimensional space,” J. Atmos. Sci., vol. 56, pp. 994–1002,1999.
    • (1999) J. Atmos. Sci. , vol.56 , pp. 994-1002
    • Xu, Q.1    Gao, J.2
  • 51
    • 0026304448 scopus 로고
    • The behavior of the forecast error covariance for a Kalman filter in two dimensions
    • S. E. Cohn and D. F. Parrish, “The behavior of the forecast error covariance for a Kalman filter in two dimensions,” Month. Weather Rev., vol. 119, pp. 1757–1785,1991.
    • (1991) Month. Weather Rev. , vol.119 , pp. 1757-1785
    • Cohn, S.E.1    Parrish, D.F.2
  • 52
    • 0032999493 scopus 로고    scopus 로고
    • Assessing the effects of data selection with DAO physical-space statistical analysis system
    • S. E. Cohn, A. Da Silva, J. Guo, M. Sienkiewicz, and D. Lamich, “Assessing the effects of data selection with DAO physical-space statistical analysis system,” Month. Weather Rev., vol. 126, pp. 2913–2926,1998.
    • (1998) Month. Weather Rev. , vol.126 , pp. 2913-2926
    • Cohn, S.E.1    Silva, A.D.2    Guo, J.3    Sienkiewicz, M.4    Lamich, D.5
  • 53
    • 0028579150 scopus 로고
    • Suboptimal schemes for atmospheric data assimilation based on the Kalman filter
    • R. Todling and S. E. Cohn, “Suboptimal schemes for atmospheric data assimilation based on the Kalman filter,” Month. Weather Rev., vol. 122, pp. 2530–2557,1994.
    • (1994) Month. Weather Rev. , vol.122 , pp. 2530-2557
    • Todling, R.1    Cohn, S.E.2
  • 54
    • 0026307694 scopus 로고
    • Simplification of the Kalman filter for meteorological data assimilation
    • D. P. Dee, “Simplification of the Kalman filter for meteorological data assimilation,” Q. J. R. Meteorol. Soc., vol. 117, pp. 365–384,1991.
    • (1991) Q. J. R. Meteorol. Soc. , vol.117 , pp. 365-384
    • Dee, D.P.1
  • 55
    • 0001482955 scopus 로고    scopus 로고
    • An introduction to estimation theory
    • S. E. Cohn, “An introduction to estimation theory,” J. Meteorol. Soc. Jpn., vol. 75, pp. 257–288,1997.
    • (1997) J. Meteorol. Soc. Jpn. , vol.75 , pp. 257-288
    • Cohn, S.E.1
  • 56
    • 33645807073 scopus 로고
    • Data assimilation in meteorology and oceanography
    • M. Ghil and P. Malanotte-Rizzoli, “Data assimilation in meteorology and oceanography,” Adv. Geophys., vol. 33, pp. 141–265,1991.
    • (1991) Adv. Geophys. , vol.33 , pp. 141-265
    • Ghil, M.1    Malanotte-Rizzoli, P.2
  • 57
    • 0027798805 scopus 로고
    • Spectral characteristics of Kalman filter systems for atmospheric data assimilation systems
    • R. Dayley and R. Menard, “Spectral characteristics of Kalman filter systems for atmospheric data assimilation systems,” Month. Weather Rev., vol. 121, pp. 1554–1565,1993.
    • (1993) Month. Weather Rev. , vol.121 , pp. 1554-1565
    • Dayley, R.1    Menard, R.2
  • 58
    • 0035359956 scopus 로고    scopus 로고
    • Nonlinearity in data assimilation: A practical method for analysis
    • M. Verlaan and A. W. Heemink “Nonlinearity in data assimilation: A practical method for analysis,” Month. Weather Rev., vol. 129, pp. 1578–1589, 2001.
    • (2001) Month. Weather Rev. , vol.129 , pp. 1578-1589
    • Verlaan, M.1    Heemink, A.W.2
  • 60
    • 3943069649 scopus 로고    scopus 로고
    • Which is better, an ensemble of positive-negative pairs or a centered spherical ensemble?
    • W. Wang, C. H. Bishop, and S. J. Julier “Which is better, an ensemble of positive-negative pairs or a centered spherical ensemble?,” Month. Weather Rev., vol. 132, pp. 1590–1605, 2004.
    • (2004) Month. Weather Rev. , vol.132 , pp. 1590-1605
    • Wang, W.1    Bishop, C.H.2    Julier, S.J.3
  • 61
    • 39049173291 scopus 로고    scopus 로고
    • Implications of the form of the ensemble transformation in the ensemble square root filters
    • P. Sakov and P. R. Oke “Implications of the form of the ensemble transformation in the ensemble square root filters,” Month. Weather Rev., vol. 136, pp. 1042–1053, 2008.
    • (2008) Month. Weather Rev. , vol.136 , pp. 1042-1053
    • Sakov, P.1    Oke, P.R.2
  • 62
    • 0032439201 scopus 로고    scopus 로고
    • Analysis scheme in ensemble Kalman filter
    • G. Burgers, J. van Leeuwen, and G. Evensen, “Analysis scheme in ensemble Kalman filter,” Month. Weather Rev., vol. 126, pp. 1719–1724,1998.
    • (1998) Month. Weather Rev. , vol.126 , pp. 1719-1724
    • Burgers, G.1    van Leeuwen, J.2    Evensen, G.3
  • 63
    • 0032024819 scopus 로고    scopus 로고
    • Data assimilation using an ensemble Kalman filter technique
    • P. L. Houtekamer and H. L. Mitchell “Data assimilation using an ensemble Kalman filter technique,” Month. Weather Rev., vol. 126, pp. 796–811, 1998.
    • (1998) Month. Weather Rev. , vol.126 , pp. 796-811
    • Houtekamer, P.L.1    Mitchell, H.L.2
  • 64
    • 0035335074 scopus 로고    scopus 로고
    • Stochastic methods for sequential data assimilation in strongly nonlinear systems
    • D. T. Pham “Stochastic methods for sequential data assimilation in strongly nonlinear systems,” Month. Weather Rev., vol. 129, pp. 1194–1207, 2001.
    • (2001) Month. Weather Rev. , vol.129 , pp. 1194-1207
    • Pham, D.T.1
  • 65
    • 0037099502 scopus 로고    scopus 로고
    • A simplified reduced order Kalman filtering and application to altimetric data assimilation in tropical Pacific
    • I. Hoteit, D. T. Pham, and J. Blum, “A simplified reduced order Kalman filtering and application to altimetric data assimilation in tropical Pacific,” J. Mar. Syst., vol. 36, pp. 101–127,2002.
    • (2002) J. Mar. Syst. , vol.36 , pp. 101-127
    • Hoteit, I.1    Pham, D.T.2    Blum, J.3
  • 66
    • 0035270690 scopus 로고    scopus 로고
    • Adaptive sampling with the ensemble transform Kalman filter—Part I: Theoretical aspects
    • C. H. Bishop, B. J. Etherton, and S. J. Majumdar “Adaptive sampling with the ensemble transform Kalman filter—Part I: Theoretical aspects,” Month. Weather Rev., vol. 129, pp. 420–436, 2001.
    • (2001) Month. Weather Rev. , vol.129 , pp. 420-436
    • Bishop, C.H.1    Etherton, B.J.2    Majumdar, S.J.3
  • 67
    • 0035655814 scopus 로고    scopus 로고
    • An ensemble adjustment filter for data assimilation
    • J. L. Anderson “An ensemble adjustment filter for data assimilation,” Month. Weather Rev., vol. 129, pp. 2884–2903, 2001.
    • (2001) Month. Weather Rev. , vol.129 , pp. 2884-2903
    • Anderson, J.L.1
  • 69
    • 0036646009 scopus 로고    scopus 로고
    • Ensemble data assimilation without perturbed observations
    • J. S. Whitaker and T. M. Hamill, “Ensemble data assimilation without perturbed observations,” Month. Weather Rev., vol. 130, pp. 1913–1924,2002.
    • (2002) Month. Weather Rev. , vol.130 , pp. 1913-1924
    • Whitaker, J.S.1    Hamill, T.M.2
  • 70
    • 4243583364 scopus 로고
    • A square root formulation of Kalman-Schmidt filter
    • J. F. Bellatoni and K. W. Dodge, “A square root formulation of Kalman-Schmidt filter,” AIAA J., vol. 5, pp. 1309–1314,1967.
    • (1967) AIAA J. , vol.5 , pp. 1309-1314
    • Bellatoni, J.F.1    Dodge, K.W.2
  • 71
    • 85007666101 scopus 로고
    • A square root formulation of Kalman covariance equations
    • A. Andrews “A square root formulation of Kalman covariance equations,” AIAA J., vol. 6, pp. 1165–1166, 1968.
    • (1968) AIAA J. , vol.6 , pp. 1165-1166
    • Andrews, A.1
  • 72
    • 0031742114 scopus 로고    scopus 로고
    • A singular evolutive extended Kalman filter for data assimilation in oceanography
    • D. T. Pham, J. Verron, and M. C. Roubau, “A singular evolutive extended Kalman filter for data assimilation in oceanography,” J. Mar. Syst., vol. 16, pp. 323–340,1998.
    • (1998) J. Mar. Syst. , vol.16 , pp. 323-340
    • Pham, D.T.1    Verron, J.2    Roubau, M.C.3
  • 73
    • 0032730919 scopus 로고    scopus 로고
    • Data assimilation via error subspace statistical estimation—Part I: Theory and schemes
    • P. Lermusiaux and A. Robinson “Data assimilation via error subspace statistical estimation—Part I: Theory and schemes,” Month. Weather Rev., vol. 127, pp. 1385–1407, 1999.
    • (1999) Month. Weather Rev. , vol.127 , pp. 1385-1407
    • Lermusiaux, P.1    Robinson, A.2
  • 74
    • 0032710658 scopus 로고    scopus 로고
    • Data assimilation via error subspace statistical estimation—Part II: Middle Atlantic bight shelfbreak front simulations and ESSE validation
    • P. Lermusiaux and A. Robinson “Data assimilation via error subspace statistical estimation—Part II: Middle Atlantic bight shelfbreak front simulations and ESSE validation,” Month. Weather Rev., vol. 127, pp. 1408–1432, 1999.
    • (1999) Month. Weather Rev. , vol.127 , pp. 1408-1432
    • Lermusiaux, P.1    Robinson, A.2
  • 75
    • 0035391382 scopus 로고    scopus 로고
    • Variance reduced ensemble Kalman filtering
    • A. W. Heemink, M. Verlaan, and A. J. Segers “Variance reduced ensemble Kalman filtering,” Month. Weather Rev., vol. 129, pp. 1718–1728, 2001.
    • (2001) Month. Weather Rev. , vol.129 , pp. 1718-1728
    • Heemink, A.W.1    Verlaan, M.2    Segers, A.J.3
  • 76
    • 0347709927 scopus 로고    scopus 로고
    • The potential of the ensemble Kalman filter for NWP—A comparison with 4D-var
    • A. C. Lorenc “The potential of the ensemble Kalman filter for NWP—A comparison with 4D-var,” Q. J. R. Meteorol. Soc., vol. 129, pp. 3183–3203, 2003.
    • (2003) Q. J. R. Meteorol. Soc. , vol.129 , pp. 3183-3203
    • Lorenc, A.C.1
  • 77
    • 0035129828 scopus 로고    scopus 로고
    • A sequential ensemble Kalman filter for atmospheric data assimilation
    • P. L. Houtekamer and H. L. Mitchell “A sequential ensemble Kalman filter for atmospheric data assimilation,” Month. Weather Rev., vol. 129, pp. 123–137, 2001.
    • (2001) Month. Weather Rev. , vol.129 , pp. 123-137
    • Houtekamer, P.L.1    Mitchell, H.L.2
  • 78
    • 0036853557 scopus 로고    scopus 로고
    • Ensemble size, balance, and model-error representation in an ensemble Kalman filter
    • H. L. Mitchell, P. L. Houtekamer, and G. Pellerin “Ensemble size, balance, and model-error representation in an ensemble Kalman filter,” Month. Weather Rev., vol. 130, pp. 2791–2808, 2002.
    • (2002) Month. Weather Rev. , vol.130 , pp. 2791-2808
    • Mitchell, H.L.1    Houtekamer, P.L.2    Pellerin, G.3
  • 79
    • 31344446619 scopus 로고    scopus 로고
    • Southern high-latitude ensemble data assimilation in the Antarctic mesoscale prediction system
    • D. M. Barker “Southern high-latitude ensemble data assimilation in the Antarctic mesoscale prediction system,” Month. Weather Rev., vol. 133, pp. 3431–3449, 2005.
    • (2005) Month. Weather Rev. , vol.133 , pp. 3431-3449
    • Barker, D.M.1
  • 80
    • 4444315259 scopus 로고    scopus 로고
    • Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, super-cell: Ensemble Kalman filter experiments
    • D. C. Dowell, F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook “Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, super-cell: Ensemble Kalman filter experiments,” Month. Weather Rev., vol. 132, pp. 1982–2005, 2004.
    • (2004) Month. Weather Rev. , vol.132 , pp. 1982-2005
    • Dowell, D.C.1    Zhang, F.2    Wicker, L.J.3    Snyder, C.4    Crook, N.A.5
  • 81
    • 34250011477 scopus 로고    scopus 로고
    • Spectral and spatial localization of back-ground-error correlations for data assimilation
    • M. Buehner and M. Charron, “Spectral and spatial localization of back-ground-error correlations for data assimilation,” Q. J. R. Meteorol. Soc., vol. 133, pp. 615–630, 2007.
    • (2007) Q. J. R. Meteorol. Soc. , vol.133 , pp. 615-630
    • Buehner, M.1    Charron, M.2
  • 82
    • 34247246183 scopus 로고    scopus 로고
    • Filtering properties of wavelets for local background-error correlations
    • O. Pannekoucke, L. Berre, and G. Desroziers, “Filtering properties of wavelets for local background-error correlations,” Q. J. R. Meteorol. Soc., vol. 133, pp. 363–379, 2007.
    • (2007) Q. J. R. Meteorol. Soc. , vol.133 , pp. 363-379
    • Pannekoucke, O.1    Berre, L.2    Desroziers, G.3
  • 83
    • 27644443229 scopus 로고    scopus 로고
    • Improvement of ensemble reliability with a new dressing kernel
    • X. Wang and C. H. Bishop “Improvement of ensemble reliability with a new dressing kernel,” Q. J. R. Meteorol. Soc., vol. 131, pp. 965–986, 2005.
    • (2005) Q. J. R. Meteorol. Soc. , vol.131 , pp. 965-986
    • Wang, X.1    Bishop, C.H.2
  • 84
    • 0033500692 scopus 로고    scopus 로고
    • A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts
    • J. L. Anderson and S. L. Anderson, “A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts,” Month. Weather Rev., vol. 127, pp. 2741–2758,1999.
    • (1999) Month. Weather Rev. , vol.127 , pp. 2741-2758
    • Anderson, J.L.1    Anderson, S.L.2
  • 85
    • 34247642674 scopus 로고    scopus 로고
    • An adaptive covariance inflation error correction algorithm for ensemble filters
    • J. L. Anderson “An adaptive covariance inflation error correction algorithm for ensemble filters,” Tellus A, vol. 59, pp. 210–224, 2007.
    • (2007) Tellus A , vol.59 , pp. 210-224
    • Anderson, J.L.1
  • 86
    • 0033149819 scopus 로고    scopus 로고
    • Ensemble transformation and adaptive observations
    • C. Bishop and Z. Toth, “Ensemble transformation and adaptive observations,” J. Atmos. Sci., vol. 56, pp. 1748–1765,1999.
    • (1999) J. Atmos. Sci. , vol.56 , pp. 1748-1765
    • Bishop, C.1    Toth, Z.2
  • 87
    • 34247191875 scopus 로고    scopus 로고
    • Issues in targeted observing
    • R. H. Langland “Issues in targeted observing,” Q. J. R. Meteorol. Soc., vol. 131, pp. 3409–3425, 2005.
    • (2005) Q. J. R. Meteorol. Soc. , vol.131 , pp. 3409-3425
    • Langland, R.H.1
  • 88
    • 0036793030 scopus 로고    scopus 로고
    • Accounting for model error in ensemble-based state estimation and forecasting
    • J. A. Hansen “Accounting for model error in ensemble-based state estimation and forecasting,” Month. Weather Rev., vol. 130, pp. 2373–2391, 2002.
    • (2002) Month. Weather Rev. , vol.130 , pp. 2373-2391
    • Hansen, J.A.1
  • 89
    • 34248364831 scopus 로고    scopus 로고
    • Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation—Part II: Imperfect model experiments
    • Z. Meng and F. Zhang, “Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation—Part II: Imperfect model experiments,” Month. Weather Rev., vol. 135, pp. 1403–1423, 2007.
    • (2007) Month. Weather Rev. , vol.135 , pp. 1403-1423
    • Meng, Z.1    Zhang, F.2
  • 90
    • 34249707809 scopus 로고    scopus 로고
    • Surface data assimilation using an ensemble Kalman filter approach with initial condition and model physics uncertainties
    • T. Fujita, D. J. Stensrud, and D. C. Dowell, “Surface data assimilation using an ensemble Kalman filter approach with initial condition and model physics uncertainties,” Month. Weather Rev., vol. 135, pp. 1846–1868,2007.
    • (2007) Month. Weather Rev. , vol.135 , pp. 1846-1868
    • Fujita, T.1    Stensrud, D.J.2    Dowell, D.C.3
  • 92
    • 28944444910 scopus 로고    scopus 로고
    • Ensemble Kalman filter assimilation of fixed screen-height observations in a parameterized PBL
    • J. P. Hacker and C. Snyder, “Ensemble Kalman filter assimilation of fixed screen-height observations in a parameterized PBL,” Month. Weather Rev., vol. 133, pp. 3260–3275, 2005.
    • (2005) Month. Weather Rev. , vol.133 , pp. 3260-3275
    • Hacker, J.P.1    Snyder, C.2
  • 93
    • 0034082826 scopus 로고    scopus 로고
    • An adaptive ensemble Kalman filter
    • H. L. Mitchell and P. L. Houtekamer, “An adaptive ensemble Kalman filter,” Month. Weather Rev., vol. 128, pp. 416–433,2000.
    • (2000) Month. Weather Rev. , vol.128 , pp. 416-433
    • Mitchell, H.L.1    Houtekamer, P.L.2
  • 94
    • 33746087111 scopus 로고    scopus 로고
    • Data assimilation for estimating the terrestrial water budget using a constrained ensemble Kalman filter
    • M. Pan and E. F. Wood, “Data assimilation for estimating the terrestrial water budget using a constrained ensemble Kalman filter,” J. Hydrometeo-rol, vol. 7, pp. 534–547,2006.
    • (2006) J. Hydrometeo-rol , vol.7 , pp. 534-547
    • Pan, M.1    Wood, E.F.2
  • 95
    • 33645541476 scopus 로고    scopus 로고
    • Snow data assimilation via an ensemble Kalman filter
    • A. G. Slater and M. P. Clark, “Snow data assimilation via an ensemble Kalman filter,” J. Hydrometeorol., vol. 7, pp. 478–493, 2006.
    • (2006) J. Hydrometeorol. , vol.7 , pp. 478-493
    • Slater, A.G.1    Clark, M.P.2
  • 96
    • 33747775838 scopus 로고    scopus 로고
    • Assessing the performance of the ensemble Kalman filter for land surface data assimilation
    • Y. Zhou, D. McLaughlin, and D. Entekhabi, “Assessing the performance of the ensemble Kalman filter for land surface data assimilation,” Month. Weather Rev., vol. 134, pp. 2128–2142,2006.
    • (2006) Month. Weather Rev. , vol.134 , pp. 2128-2142
    • Zhou, Y.1    McLaughlin, D.2    Entekhabi, D.3
  • 97
    • 0033912092 scopus 로고    scopus 로고
    • Data assimilation into a primitive-equation model with a parallel ensemble Kalman filter
    • C. L. Keppenne, “Data assimilation into a primitive-equation model with a parallel ensemble Kalman filter,” Month. Weather Rev., vol. 128, pp. 1971–1981,2000.
    • (2000) Month. Weather Rev. , vol.128 , pp. 1971-1981
    • Keppenne, C.L.1
  • 98
    • 0032764305 scopus 로고    scopus 로고
    • Data assimilation into nonlinear stochastic models
    • R. N. Miller, M. Ghil, and F. Gauthiez, “Data assimilation into nonlinear stochastic models,” Tellus A, vol. 51, pp. 167–194,1999.
    • (1999) Tellus A , vol.51 , pp. 167-194
    • Miller, R.N.1    Ghil, M.2    Gauthiez, F.3
  • 99
    • 0033942436 scopus 로고    scopus 로고
    • An ensemble Kalman smoother for nonlinear dynamics
    • G. Evensen and P. J. van Leeuwen “An ensemble Kalman smoother for nonlinear dynamics,” Month. Weather Rev., vol. 128, pp. 1852–1867, 2000.
    • (2000) Month. Weather Rev. , vol.128 , pp. 1852-1867
    • Evensen, G.1    van Leeuwen, P.J.2
  • 104
    • 0036965503 scopus 로고    scopus 로고
    • Initial testing of a massively parallel ensemble Kalman filter with the Poseidon isopycnal ocean general circulation model
    • C. L. Keppenne and M. M. Rienecker “Initial testing of a massively parallel ensemble Kalman filter with the Poseidon isopycnal ocean general circulation model,” Month. Weather Rev., vol. 130, pp. 2951–2965, 2002.
    • (2002) Month. Weather Rev. , vol.130 , pp. 2951-2965
    • Keppenne, C.L.1    Rienecker, M.M.2
  • 106
    • 0035129828 scopus 로고    scopus 로고
    • A sequential ensemble Kalman filter for atmospheric data assimilation
    • P. L. Houtekamer and H. L. Mitchell “A sequential ensemble Kalman filter for atmospheric data assimilation,” Month. Weather Rev., vol. 129, pp. 123–137, 2001.
    • (2001) Month. Weather Rev. , vol.129 , pp. 123-137
    • Houtekamer, P.L.1    Mitchell, H.L.2
  • 107
    • 34548625197 scopus 로고    scopus 로고
    • Scalable implementations of ensemble filter algorithms for data assimilation
    • J. L. Anderson and N. Collins, “Scalable implementations of ensemble filter algorithms for data assimilation,” J. Atmos. Ocean. Technol., vol. 24, pp. 1452–1463,2007.
    • (2007) J. Atmos. Ocean. Technol. , vol.24 , pp. 1452-1463
    • Anderson, J.L.1    Collins, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.