-
1
-
-
36749109015
-
-
0021-9606,. 10.1063/1.431542
-
C. L. Briant and J. J. Burton, J. Chem. Phys. 0021-9606 63, 2045 (1975). 10.1063/1.431542
-
(1975)
J. Chem. Phys.
, vol.63
, pp. 2045
-
-
Briant, C.L.1
Burton, J.J.2
-
2
-
-
21544479558
-
-
1050-2947,. 10.1103/PhysRevA.30.919
-
R. S. Berry, J. Jellinek, and G. Natanson, Phys. Rev. A 1050-2947 30, 919 (1984). 10.1103/PhysRevA.30.919
-
(1984)
Phys. Rev. A
, vol.30
, pp. 919
-
-
Berry, R.S.1
Jellinek, J.2
Natanson, G.3
-
3
-
-
33749519654
-
-
0021-9606,. 10.1063/1.453602
-
T. L. Beck, J. Jellinek, and R. S. Berry, J. Chem. Phys. 0021-9606 87, 545 (1987). 10.1063/1.453602
-
(1987)
J. Chem. Phys.
, vol.87
, pp. 545
-
-
Beck, T.L.1
Jellinek, J.2
Berry, R.S.3
-
4
-
-
6344287412
-
-
0022-3654,. 10.1021/j100337a016
-
H. Reiss, P. Mirabel, and R. L. Whetten, J. Phys. Chem. 0022-3654 92, 7241 (1988). 10.1021/j100337a016
-
(1988)
J. Phys. Chem.
, vol.92
, pp. 7241
-
-
Reiss, H.1
Mirabel, P.2
Whetten, R.L.3
-
5
-
-
0000584718
-
-
0031-9007,. 10.1103/PhysRevLett.65.1567
-
P. Labastie and R. L. Whetten, Phys. Rev. Lett. 0031-9007 65, 1567 (1990). 10.1103/PhysRevLett.65.1567
-
(1990)
Phys. Rev. Lett.
, vol.65
, pp. 1567
-
-
Labastie, P.1
Whetten, R.L.2
-
6
-
-
0001332261
-
-
1050-2947,. 10.1103/PhysRevA.46.791
-
H. -P. Cheng, X. Li, R. L. Whetten, and R. S. Berry, Phys. Rev. A 1050-2947 46, 791 (1992). 10.1103/PhysRevA.46.791
-
(1992)
Phys. Rev. A
, vol.46
, pp. 791
-
-
Cheng, H.-P.1
Li, X.2
Whetten, R.L.3
Berry, R.S.4
-
7
-
-
36449007250
-
-
0021-9606,. 10.1063/1.464097
-
J. P. Rose and R. S. Berry, J. Chem. Phys. 0021-9606 98, 3246 (1993). 10.1063/1.464097
-
(1993)
J. Chem. Phys.
, vol.98
, pp. 3246
-
-
Rose, J.P.1
Berry, R.S.2
-
8
-
-
0001671756
-
-
0021-9606,. 10.1063/1.473636
-
B. Vekhter and R. S. Berry, J. Chem. Phys. 0021-9606 106, 6456 (1997). 10.1063/1.473636
-
(1997)
J. Chem. Phys.
, vol.106
, pp. 6456
-
-
Vekhter, B.1
Berry, R.S.2
-
9
-
-
66749122087
-
-
Consider a solid macroscopic object at its melting temperature. Its internal energy corresponds to the energy of the solid, and the energy distribution is narrow. If heat is transferred to the object, its internal energy increases and some of the solid melts. As more heat is transferred, more solid melts and the internal energy of the system (solid plus liquid) shifts to higher values until eventually the entire solid melts. The width of the internal energy distribution during this melting transition is the thermal width of the solid and liquid components, plus a contribution from fluctuations in the amounts of solid and liquid (which is small for a macroscopic object, but will become substantial for a small cluster).
-
Consider a solid macroscopic object at its melting temperature. Its internal energy corresponds to the energy of the solid, and the energy distribution is narrow. If heat is transferred to the object, its internal energy increases and some of the solid melts. As more heat is transferred, more solid melts and the internal energy of the system (solid plus liquid) shifts to higher values until eventually the entire solid melts. The width of the internal energy distribution during this melting transition is the thermal width of the solid and liquid components, plus a contribution from fluctuations in the amounts of solid and liquid (which is small for a macroscopic object, but will become substantial for a small cluster).
-
-
-
-
10
-
-
0042655860
-
-
in, NATO Advanced Studies Institute, Series B Vol., edited by P. Jena, B. K. Rao, and S. Khanna (Plenum, New York),.
-
J. Luo, U. Landman, and J. Jortner, in Physics and Chemistry of Small Clusters, NATO Advanced Studies Institute, Series B Vol. 158, edited by, P. Jena, B. K. Rao, and, S. Khanna, (Plenum, New York, 1987), p. 155.
-
(1987)
Physics and Chemistry of Small Clusters
, vol.158
, pp. 155
-
-
Luo, J.1
Landman, U.2
Jortner, J.3
-
11
-
-
5844234473
-
-
0022-3654,. 10.1021/j100076a007
-
C. L. Cleveland, U. Landman, and W. D. Luedtke, J. Phys. Chem. 0022-3654 98, 6272 (1994). 10.1021/j100076a007
-
(1994)
J. Phys. Chem.
, vol.98
, pp. 6272
-
-
Cleveland, C.L.1
Landman, U.2
Luedtke, W.D.3
-
12
-
-
4243980428
-
-
0163-1829,. 10.1103/PhysRevB.60.5065
-
C. L. Cleveland, W. D. Luedtke, and U. Landman, Phys. Rev. B 0163-1829 60, 5065 (1999). 10.1103/PhysRevB.60.5065
-
(1999)
Phys. Rev. B
, vol.60
, pp. 5065
-
-
Cleveland, C.L.1
Luedtke, W.D.2
Landman, U.3
-
13
-
-
20044379644
-
-
0163-1829,. 10.1103/PhysRevB.71.115404
-
S. C. Hendy, Phys. Rev. B 0163-1829 71, 115404 (2005). 10.1103/PhysRevB.71.115404
-
(2005)
Phys. Rev. B
, vol.71
, pp. 115404
-
-
Hendy, S.C.1
-
14
-
-
25144503845
-
-
0021-9606,. 10.1063/1.2000248
-
D. Schebarchov and S. C. Hendy, J. Chem. Phys. 0021-9606 123, 104701 (2005). 10.1063/1.2000248
-
(2005)
J. Chem. Phys.
, vol.123
, pp. 104701
-
-
Schebarchov, D.1
Hendy, S.C.2
-
15
-
-
27144444024
-
-
0031-9007,. 10.1103/PhysRevLett.95.116101
-
D. Schebarchov and S. C. Hendy, Phys. Rev. Lett. 0031-9007 95, 116101 (2005). 10.1103/PhysRevLett.95.116101
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 116101
-
-
Schebarchov, D.1
Hendy, S.C.2
-
16
-
-
33745439055
-
-
0031-9007,. 10.1103/PhysRevLett.96.256101
-
D. Schebarchov and S. C. Hendy, Phys. Rev. Lett. 0031-9007 96, 256101 (2006). 10.1103/PhysRevLett.96.256101
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 256101
-
-
Schebarchov, D.1
Hendy, S.C.2
-
17
-
-
3242877566
-
-
0031-9007,. 10.1103/PhysRevLett.79.99
-
M. Schmidt, R. Kusche, W. Kronmüller, B. von Issendorf, and H. Haberland, Phys. Rev. Lett. 0031-9007 79, 99 (1997). 10.1103/PhysRevLett.79.99
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 99
-
-
Schmidt, M.1
Kusche, R.2
Kronmüller, W.3
Von Issendorf, B.4
Haberland, H.5
-
18
-
-
0032554922
-
-
0028-0836,. 10.1038/30415
-
M. Schmidt, R. Kusche, B. von Issendorf, and H. Haberland, Nature (London) 0028-0836 393, 238 (1998). 10.1038/30415
-
(1998)
Nature (London)
, vol.393
, pp. 238
-
-
Schmidt, M.1
Kusche, R.2
Von Issendorf, B.3
Haberland, H.4
-
19
-
-
0000095575
-
-
1631-0705,. 10.1016/S1631-0705(02)01326-9
-
M. Schmidt and H. Haberland, C. R. Phys. 1631-0705 3, 327 (2002). 10.1016/S1631-0705(02)01326-9
-
(2002)
C. R. Phys.
, vol.3
, pp. 327
-
-
Schmidt, M.1
Haberland, H.2
-
20
-
-
0038303220
-
-
0031-9007,. 10.1103/PhysRevLett.90.103401
-
M. Schmidt, J. Donges, Th. Hippler, and H. Haberland, Phys. Rev. Lett. 0031-9007 90, 103401 (2003). 10.1103/PhysRevLett.90.103401
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 103401
-
-
Schmidt, M.1
Donges, J.2
Hippler, Th.3
Haberland, H.4
-
22
-
-
0347051499
-
-
0031-9007,. 10.1103/PhysRevLett.91.215508
-
G. A. Breaux, R. C. Benirschke, T. Sugai, B. S. Kinnear, and M. F. Jarrold, Phys. Rev. Lett. 0031-9007 91, 215508 (2003). 10.1103/PhysRevLett.91. 215508
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 215508
-
-
Breaux, G.A.1
Benirschke, R.C.2
Sugai, T.3
Kinnear, B.S.4
Jarrold, M.F.5
-
23
-
-
3242696740
-
-
0002-7863,. 10.1021/ja0477423
-
G. A. Breaux, D. A. Hillman, C. M. Neal, R. C. Benirschke, and M. F. Jarrold, J. Am. Chem. Soc. 0002-7863 126, 8628 (2004). 10.1021/ja0477423
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 8628
-
-
Breaux, G.A.1
Hillman, D.A.2
Neal, C.M.3
Benirschke, R.C.4
Jarrold, M.F.5
-
24
-
-
25444487481
-
-
1089-5647,. 10.1021/jp052887x
-
G. A. Breaux, B. Cao, and M. F. Jarrold, J. Phys. Chem. B 1089-5647 109, 16575 (2005). 10.1021/jp052887x
-
(2005)
J. Phys. Chem. B
, vol.109
, pp. 16575
-
-
Breaux, G.A.1
Cao, B.2
Jarrold, M.F.3
-
25
-
-
0011638362
-
-
0031-9007,. 10.1103/PhysRevLett.59.1895
-
J. Bösiger and S. Leutwyler, Phys. Rev. Lett. 0031-9007 59, 1895 (1987). 10.1103/PhysRevLett.59.1895
-
(1987)
Phys. Rev. Lett.
, vol.59
, pp. 1895
-
-
Bösiger, J.1
Leutwyler, S.2
-
26
-
-
3843130667
-
-
0031-9007,. 10.1103/PhysRevLett.61.1190
-
M. Y. Hahn and R. L. Whetten, Phys. Rev. Lett. 0031-9007 61, 1190 (1988). 10.1103/PhysRevLett.61.1190
-
(1988)
Phys. Rev. Lett.
, vol.61
, pp. 1190
-
-
Hahn, M.Y.1
Whetten, R.L.2
-
27
-
-
14344283425
-
-
0031-9007,. 10.1103/PhysRevLett.86.1191
-
M. Schmidt, R. Kusche, T. Hippler, J. Donges, W. Kronmüller, B. von Issendorff, and H. Haberland, Phys. Rev. Lett. 0031-9007 86, 1191 (2001). 10.1103/PhysRevLett.86.1191
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 1191
-
-
Schmidt, M.1
Kusche, R.2
Hippler, T.3
Donges, J.4
Kronmüller, W.5
Von Issendorff, B.6
Haberland, H.7
-
28
-
-
34548023938
-
-
0163-1829,. 10.1103/PhysRevB.76.054113
-
C. M. Neal, A. K. Starace, and M. F. Jarrold, Phys. Rev. B 0163-1829 76, 054113 (2007). 10.1103/PhysRevB.76.054113
-
(2007)
Phys. Rev. B
, vol.76
, pp. 054113
-
-
Neal, C.M.1
Starace, A.K.2
Jarrold, M.F.3
-
29
-
-
33845954514
-
-
1044-0305,. 10.1016/j.jasms.2006.08.019
-
C. M. Neal, A. K. Starace, and M. F. Jarrold, J. Am. Soc. Mass Spectrom. 1044-0305 18, 74 (2007). 10.1016/j.jasms.2006.08.019
-
(2007)
J. Am. Soc. Mass Spectrom.
, vol.18
, pp. 74
-
-
Neal, C.M.1
Starace, A.K.2
Jarrold, M.F.3
-
30
-
-
34547569681
-
-
0034-6748,. 10.1063/1.2751393
-
C. M. Neal, G. A. Breaux, B. Cao, A. K. Starace, and M. F. Jarrold, Rev. Sci. Instrum. 0034-6748 78, 075108 (2007). 10.1063/1.2751393
-
(2007)
Rev. Sci. Instrum.
, vol.78
, pp. 075108
-
-
Neal, C.M.1
Breaux, G.A.2
Cao, B.3
Starace, A.K.4
Jarrold, M.F.5
-
31
-
-
2542462663
-
-
0022-3654,. 10.1021/j100176a028
-
M. F. Jarrold and E. C. Honea, J. Phys. Chem. 0022-3654 95, 9181 (1991). 10.1021/j100176a028
-
(1991)
J. Phys. Chem.
, vol.95
, pp. 9181
-
-
Jarrold, M.F.1
Honea, E.C.2
-
32
-
-
33846947230
-
-
0021-9606,. 10.1063/1.2432121
-
D. Poland, J. Chem. Phys. 0021-9606 126, 054507 (2007). 10.1063/1.2432121
-
(2007)
J. Chem. Phys.
, vol.126
, pp. 054507
-
-
Poland, D.1
-
34
-
-
66749152765
-
-
This behavior might occur, for example, for large clusters, where the time it takes to heat them is comparable to the transit time through the temperature variable extension.
-
This behavior might occur, for example, for large clusters, where the time it takes to heat them is comparable to the transit time through the temperature variable extension.
-
-
-
-
35
-
-
66749157568
-
-
It does not include a contribution from fluctuations in the amounts of solid and liquid.
-
It does not include a contribution from fluctuations in the amounts of solid and liquid.
-
-
-
|