메뉴 건너뛰기




Volumn 25, Issue 4, 2009, Pages 409-426

Bayesian beliefnetworks for systemfault diagnostics

Author keywords

Bayesian belief networks; Fault diagnostics; Fault tree analysis

Indexed keywords

BAYESIAN; BAYESIAN BELIEF NETWORKS; CAUSAL RELATIONS; COMPONENT FAILURES; DETECTION PROCESS; FAULT DIAGNOSIS; FAULT DIAGNOSTIC METHODS; FAULT DIAGNOSTICS; FAULT-TREE; OPERATING CONDITION; POSTERIOR PROBABILITY; PROBABILISTIC MODELS; SENSOR READINGS; SINGLE NETWORKS; SUBNETWORKS; SYSTEM COMPONENTS; SYSTEM STATE;

EID: 66149128345     PISSN: 07488017     EISSN: 10991638     Source Type: Journal    
DOI: 10.1002/qre.978     Document Type: Article
Times cited : (86)

References (15)
  • 4
    • 33645741993 scopus 로고    scopus 로고
    • Bayesian networks-based approach for power systems fault diagnosis
    • Yongli Z. Bayesian networks-based approach for power systems fault diagnosis. IEEE Transactions on Power Delivery2006; 21(9):634-639.
    • (2006) IEEE Transactions on Power Delivery , vol.21 , Issue.9 , pp. 634-639
    • Yongli, Z.1
  • 5
  • 10
    • 38249002202 scopus 로고
    • Comparison of belief networks and rule-based experts system for fault diagnosis of chemical processes
    • Rojas-Guzman C, Kramer MA. Comparison of belief networks and rule-based experts system for fault diagnosis of chemical processes. Engineering Applications of Artificial Intelligence1993; 6(3):191-202.
    • (1993) Engineering Applications of Artificial Intelligence , vol.6 , Issue.3 , pp. 191-202
    • Rojas-Guzman, C.1    Kramer, M.A.2
  • 11
    • 0003846041 scopus 로고    scopus 로고
    • Technical Report-Microsoft Research Advanced Technology Division MSR-TR-(95-06)
    • Heckerman D. A tutorial on learning with Bayesian networks. Technical Report-Microsoft Research Advanced Technology Division MSR-TR-(95-06), 1996.
    • (1996)
    • Heckerman, D.1
  • 12
    • 17644407093 scopus 로고    scopus 로고
    • Matsuura JP, Yoneyama T. Learning Bayesian networks for fault detection. Machine Learning for Signal Processing, Proceedings of the 2004 14th IEEE Signal Processing Society Workshop, Sao Lu'is, Brazil, 2004; 133-142.
    • Matsuura JP, Yoneyama T. Learning Bayesian networks for fault detection. Machine Learning for Signal Processing, Proceedings of the 2004 14th IEEE Signal Processing Society Workshop, Sao Lu'is, Brazil, 2004; 133-142.
  • 14
    • 0038148305 scopus 로고    scopus 로고
    • Probabilistic model for sensor fault detection and identification
    • Mehranbod N, Soroush M, Piovoso M, Ogunnaike BA. Probabilistic model for sensor fault detection and identification. AIChE Journal2003; 49(7):1787-1802.
    • (2003) AIChE Journal , vol.49 , Issue.7 , pp. 1787-1802
    • Mehranbod, N.1    Soroush, M.2    Piovoso, M.3    Ogunnaike, B.A.4
  • 15
    • 0033736574 scopus 로고    scopus 로고
    • Instrument fault detection and isolation: State of the art and new research trends
    • Betta G, Pietrosanto A. Instrument fault detection and isolation: State of the art and new research trends. IEEE Transactions on Instrumentation and Measurement2000; 49(1):100-107.
    • (2000) IEEE Transactions on Instrumentation and Measurement , vol.49 , Issue.1 , pp. 100-107
    • Betta, G.1    Pietrosanto, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.