메뉴 건너뛰기




Volumn 25, Issue 3, 2009, Pages 668-684

A fully Galerkin method for the damped generalized regularized long-wave (DGRLW) equation

Author keywords

Convergence; Crank Nicolson method; DGRLW equation; Existence; Linearization; Uniqueness

Indexed keywords


EID: 66049150044     PISSN: 0749159X     EISSN: 10982426     Source Type: Journal    
DOI: 10.1002/num.20367     Document Type: Article
Times cited : (19)

References (26)
  • 1
    • 28444497386 scopus 로고    scopus 로고
    • Approximate wave solutions for generalized Benjamin‐Bona‐Mahony‐Burgers equations
    • 1 K. Al‐Khaled, S. Momani, and A. Alawneh, Approximate wave solutions for generalized Benjamin‐Bona‐Mahony‐Burgers equations, Appl Math Comput 171 (2005), 281–292.
    • (2005) Appl Math Comput , vol.171 , pp. 281-292
    • Al‐Khaled, K.1    Momani, S.2    Alawneh, A.3
  • 2
    • 0346497913 scopus 로고    scopus 로고
    • A numerical simulation of solitary‐wave solutions of the generalized regularized long‐wave equation
    • 2 D. Kaya, A numerical simulation of solitary‐wave solutions of the generalized regularized long‐wave equation, Appl Math Comput 149 (2004), 833–841.
    • (2004) Appl Math Comput , vol.149 , pp. 833-841
    • Kaya, D.1
  • 3
    • 34250361929 scopus 로고    scopus 로고
    • Solitary waves of the EW and RLW equations
    • 3 J. I. Ramos, Solitary waves of the EW and RLW equations, Chaos Solitons Fractals 34 (2007), 1498–1518.
    • (2007) Chaos Solitons Fractals , vol.34 , pp. 1498-1518
    • Ramos, J.I.1
  • 4
    • 0001865962 scopus 로고
    • Model equations for long waves in nonlinear dispersive systems
    • 4 T. B. Benjamin, J. L. Bona, and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos Trans Roy Soc London A 272 (1972), 47–78.
    • (1972) Philos Trans Roy Soc London A , vol.272 , pp. 47-78
    • Benjamin, T.B.1    Bona, J.L.2    Mahony, J.J.3
  • 5
    • 84958444374 scopus 로고
    • Calculations of the development of an undular bore
    • 5 D. H. Peregrine, Calculations of the development of an undular bore, J Fluid Mech 25 (1966), 321–326.
    • (1966) J Fluid Mech , vol.25 , pp. 321-326
    • Peregrine, D.H.1
  • 6
    • 0032167132 scopus 로고    scopus 로고
    • Large‐time behavior of solution for generalized Benjamin‐Bona‐Mahony‐Burgers Equations
    • 6 M. Mei, Large‐time behavior of solution for generalized Benjamin‐Bona‐Mahony‐Burgers Equations, Nonlinear Anal 33 (1998), 699–714.
    • (1998) Nonlinear Anal , vol.33 , pp. 699-714
    • Mei, M.1
  • 7
    • 0036679640 scopus 로고    scopus 로고
    • Numerical behavior of stable a nd unstable solitary waves
    • 7 A. Dura and M. A. Lopez‐Marcos, Numerical behavior of stable a nd unstable solitary waves, Appl Numer Math 42 (2002), 95–116.
    • (2002) Appl Numer Math , vol.42 , pp. 95-116
    • Dura, A.1    Lopez‐Marcos, M.A.2
  • 8
    • 0036013339 scopus 로고    scopus 로고
    • On the general form of the Benjamin‐Bona‐Mahony equation in fluid mechanics
    • 8 H. Zhang, G. M. Wei, and Y. T. Gao, On the general form of the Benjamin‐Bona‐Mahony equation in fluid mechanics, Czech J Phys 52 (2002), 344–373.
    • (2002) Czech J Phys , vol.52 , pp. 344-373
    • Zhang, H.1    Wei, G.M.2    Gao, Y.T.3
  • 9
    • 0001119719 scopus 로고
    • The initial‐value problem for the Korteweg‐de Vries equation
    • 9 J. L. Bona and R. Smith, The initial‐value problem for the Korteweg‐de Vries equation, Philos Trans Roy Soc London A 278 (1975), 555–601.
    • (1975) Philos Trans Roy Soc London A , vol.278 , pp. 555-601
    • Bona, J.L.1    Smith, R.2
  • 10
    • 0040476053 scopus 로고
    • Weak solutions for a nonlinear dispersive equation
    • 10 L. A. Medeiros and M. M. Miranda, Weak solutions for a nonlinear dispersive equation, J Math Anal Appl 59 (1977), 432–441.
    • (1977) J Math Anal Appl , vol.59 , pp. 432-441
    • Medeiros, L.A.1    Miranda, M.M.2
  • 11
    • 0040224978 scopus 로고
    • Existence and uniqueness for periodic solutions of the Benjamin‐Bona‐Mahony equation
    • 11 L. A. Medeiros and G. P. Menzela, Existence and uniqueness for periodic solutions of the Benjamin‐Bona‐Mahony equation, SIAM J Math Anal 8 (1977), 792–799.
    • (1977) SIAM J Math Anal , vol.8 , pp. 792-799
    • Medeiros, L.A.1    Menzela, G.P.2
  • 12
    • 11144315347 scopus 로고    scopus 로고
    • Exact solutions of two nonlinear wave equations with simulation terms of any order
    • 12 C. Yong, L. Biao, and Z. Hongqing, Exact solutions of two nonlinear wave equations with simulation terms of any order, Comm Nonlinear Sci Numer Simulation 10 (2005), 133–138.
    • (2005) Comm Nonlinear Sci Numer Simulation , vol.10 , pp. 133-138
    • Yong, C.1    Biao, L.2    Hongqing, Z.3
  • 13
    • 0005374978 scopus 로고    scopus 로고
    • An O(k2 + h2) finite difference method for one‐space Burgers' equation in polar coordinates
    • 13 R. K. Mohanty, An O (k 2 + h 2) finite difference method for one‐space Burgers' equation in polar coordinates, Numer Meth Partial Diff Eq 12 (1996), 579–583.
    • (1996) Numer Meth Partial Diff Eq , vol.12 , pp. 579-583
    • Mohanty, R.K.1
  • 14
    • 0001005409 scopus 로고    scopus 로고
    • A finite difference scheme for travelling wave solutions to Burgers equation
    • 14 R. E. Mickens, A finite difference scheme for travelling wave solutions to Burgers equation, Numer Meth Partial Diff Eq 14 (1998), 815–820.
    • (1998) Numer Meth Partial Diff Eq , vol.14 , pp. 815-820
    • Mickens, R.E.1
  • 15
    • 0036630588 scopus 로고    scopus 로고
    • Finite difference approximate solutions for the two‐dimensional Burgers' system
    • 15 R. Kannan and S. K. Chung, Finite difference approximate solutions for the two‐dimensional Burgers' system, Comput Math Appl 44 (2002), 193–200.
    • (2002) Comput Math Appl , vol.44 , pp. 193-200
    • Kannan, R.1    Chung, S.K.2
  • 16
    • 33845207137 scopus 로고    scopus 로고
    • On the convergence of difference schemes for the Benjamin‐Bona‐Mahony (BBM) equation
    • 16 T. Achouri, N. Khiari, and K. Omrani, On the convergence of difference schemes for the Benjamin‐Bona‐Mahony (BBM) equation, Appl Math Comput 182 (2006), 999–1005.
    • (2006) Appl Math Comput , vol.182 , pp. 999-1005
    • Achouri, T.1    Khiari, N.2    Omrani, K.3
  • 17
    • 38049113156 scopus 로고    scopus 로고
    • Finite difference discretization of the Benjamin‐Bona‐Mahony‐Burgers (BBMB) equation
    • 17 K. Omrani and M. Ayadi, Finite difference discretization of the Benjamin‐Bona‐Mahony‐Burgers (BBMB) equation, Numer Meth Partial Diff Eq 24 (2008), 239–248.
    • (2008) Numer Meth Partial Diff Eq , vol.24 , pp. 239-248
    • Omrani, K.1    Ayadi, M.2
  • 18
    • 0041983388 scopus 로고
    • Error estimates for a Galerkin method for a class of model equations for long waves
    • 18 L. Wahlbin, Error estimates for a Galerkin method for a class of model equations for long waves, Numer Math 23 (1975), 289–303.
    • (1975) Numer Math , vol.23 , pp. 289-303
    • Wahlbin, L.1
  • 19
    • 0011412428 scopus 로고
    • Time‐stepping Galerkin methods for nonlinear Sobolev partial differential equation
    • 19 R. E. Ewing, Time‐stepping Galerkin methods for nonlinear Sobolev partial differential equation, IAM J Numer Anal 15 (1978), 1125–1150.
    • (1978) IAM J Numer Anal , vol.15 , pp. 1125-1150
    • Ewing, R.E.1
  • 20
    • 33748953746 scopus 로고
    • Superconvergence of finite element approximation to the solution of a Sobolev equation in a single space variable
    • 20 D. N. Arnold, J. Douglas Jr., and V. Thomée, Superconvergence of finite element approximation to the solution of a Sobolev equation in a single space variable, Math Comput 27 (1981), 737–743.
    • (1981) Math Comput , vol.27 , pp. 737-743
    • Arnold, D.N.1    Douglas, J.2    Thomée, V.3
  • 21
    • 33748977285 scopus 로고    scopus 로고
    • The convergence of the fully discrete Galerkin approximations for the Benjamin‐Bona‐Mahony (BBM) equation
    • 21 K. Omrani, The convergence of the fully discrete Galerkin approximations for the Benjamin‐Bona‐Mahony (BBM) equation, Appl Math Comput 180 (2006), 614–621.
    • (2006) Appl Math Comput , vol.180 , pp. 614-621
    • Omrani, K.1
  • 22
    • 1842505268 scopus 로고    scopus 로고
    • Exact and numerical traveling wave solutions for nonlinear coupled equations using symbolic computation
    • 22 D. Kaya and I. E. Inan, Exact and numerical traveling wave solutions for nonlinear coupled equations using symbolic computation, Appl Math Comput 151 (2004), 775–787.
    • (2004) Appl Math Comput , vol.151 , pp. 775-787
    • Kaya, D.1    Inan, I.E.2
  • 23
    • 0003560721 scopus 로고
    • The finite element method for elliptic problems
    • 23 P. G. Ciarlet, The finite element method for elliptic problems, North‐Holland, Amsterdam, 1978.
    • (1978)
    • Ciarlet, P.G.1
  • 24
    • 0003747496 scopus 로고
    • Galerkin finite element methods for parabolic problems, Lecture Notes in Mathematics
    • 24 V. Thomée, Galerkin finite element methods for parabolic problems, Lecture Notes in Mathematics, Vol. 1054, Springer‐Verlag, Berlin, 1984.
    • (1984) , vol.1054
    • Thomée, V.1
  • 25
    • 0040374231 scopus 로고
    • Existence and uniqueness theorems for solutions of nonlinear boundary value problems, in: Applications of Nonlinear P.D.Es. Proceedings of Symposium of Applied Mathematics
    • 25 F. E. Browder, Existence and uniqueness theorems for solutions of nonlinear boundary value problems, In: R. Finn, editors, Applications of Nonlinear P.D.Es. Proceedings of Symposium of Applied Mathematics, Vol. 17, A.M.S, Providence, 1965.
    • (1965) , vol.17
    • Browder, F.E.1
  • 26
    • 26444462611 scopus 로고    scopus 로고
    • Convergence of Galerkin Approximations for the Kuramoto‐Tsuzuki equation
    • 26 K. Omrani, Convergence of Galerkin Approximations for the Kuramoto‐Tsuzuki equation, Numer Meth Partial Diff Eq 21 (2005), 961–975.
    • (2005) Numer Meth Partial Diff Eq , vol.21 , pp. 961-975
    • Omrani, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.