메뉴 건너뛰기




Volumn 24, Issue 1, 2008, Pages 239-248

Finite difference discretization of the Benjamin-Bona-Mahony-Burgers equation

Author keywords

BBMB equation; Difference scheme; L convergence; Stability

Indexed keywords


EID: 38049113156     PISSN: 0749159X     EISSN: 10982426     Source Type: Journal    
DOI: 10.1002/num.20256     Document Type: Article
Times cited : (98)

References (30)
  • 1
    • 0001865962 scopus 로고
    • Model equations for long waves in nonlinear dispersive systems
    • 1 T. B. Benjamin, J. L. Bona, and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos Trans Roy Soc Lond A 272 ( 1972), 47–78.
    • (1972) Philos Trans Roy Soc Lond A , vol.272 , pp. 47-78
    • Benjamin, T.B.1    Bona, J.L.2    Mahony, J.J.3
  • 2
    • 0001119719 scopus 로고
    • The initial‐value problem for the Korteweg‐de Vries equation
    • 2 J. L. Bona and R. smith, The initial‐value problem for the Korteweg‐de Vries equation, Philos Trans Roy Soc Lond A 278 ( 1975), 555–601.
    • (1975) Philos Trans Roy Soc Lond A , vol.278 , pp. 555-601
    • Bona, J.L.1    smith, R.2
  • 3
    • 11144315347 scopus 로고    scopus 로고
    • Exact solutions of two nonlinear wave equations with simulation terms of any order
    • 3 C. Yong, L. Biao, and Z. Hongqing, Exact solutions of two nonlinear wave equations with simulation terms of any order, Comm Nonlinear Sci Numer Simul 10 ( 2005), 133–138.
    • (2005) Comm Nonlinear Sci Numer Simul , vol.10 , pp. 133-138
    • Yong, C.1    Biao, L.2    Hongqing, Z.3
  • 4
    • 0040476053 scopus 로고
    • Weak solutions for a nonlinear dispersive equation
    • 4 L. A. Medeiros and M. Milla Miranda, Weak solutions for a nonlinear dispersive equation, J Math Anal Appl 59 ( 1977), 432–441.
    • (1977) J Math Anal Appl , vol.59 , pp. 432-441
    • Medeiros, L.A.1    Miranda, M.Milla2
  • 5
    • 0040224978 scopus 로고
    • Existence and uniqueness for periodic solutions of the Benjamin‐Bona‐Mahony equation
    • 5 L. A. Medeiros and G. Perla Menzela, Existence and uniqueness for periodic solutions of the Benjamin‐Bona‐Mahony equation, SIAM J Math Anal 8 ( 1977), 792–799.
    • (1977) SIAM J Math Anal , vol.8 , pp. 792-799
    • Medeiros, L.A.1    Menzela, G.Perla2
  • 6
    • 0032167132 scopus 로고    scopus 로고
    • Large‐time behavior of solution for generalized Benjamin‐Bona‐Mahony‐Burgers Equations
    • 6 M. Mei, Large‐time behavior of solution for generalized Benjamin‐Bona‐Mahony‐Burgers Equations, Nonlinear Anal 33 ( 1998), 699–714.
    • (1998) Nonlinear Anal , vol.33 , pp. 699-714
    • Mei, M.1
  • 7
    • 84958444374 scopus 로고    scopus 로고
    • Calculations of the development of an undular bore
    • 7 D. H. Peregrine, Calculations of the development of an undular bore, J Fluid Mech 25 ( 1996), 321–326.
    • (1996) J Fluid Mech , vol.25 , pp. 321-326
    • Peregrine, D.H.1
  • 8
    • 0036013339 scopus 로고    scopus 로고
    • On the general form of the Benjamin‐Bona‐Mahony equation in fluid mechanics
    • 8 H. Zhang, G. M. Wei, and Y. T. Gao, On the general form of the Benjamin‐Bona‐Mahony equation in fluid mechanics, Czech J Phys 52 ( 2002), 344–373.
    • (2002) Czech J Phys , vol.52 , pp. 344-373
    • Zhang, H.1    Wei, G.M.2    Gao, Y.T.3
  • 9
    • 51249190381 scopus 로고
    • Galerkin methods applied to the Benjamin‐Bona‐Mahony equation
    • 9 M. A. Raupp, Galerkin methods applied to the Benjamin‐Bona‐Mahony equation, Bol Soc Brazil Mat 6 ( 1975), 65–77.
    • (1975) Bol Soc Brazil Mat , vol.6 , pp. 65-77
    • Raupp, M.A.1
  • 10
    • 0041983388 scopus 로고
    • Error estimates for a Galerkin method for a class of model equations for long waves
    • 10 L. Wahlbin, Error estimates for a Galerkin method for a class of model equations for long waves, Numer Math 23 ( 1975), 289–303.
    • (1975) Numer Math , vol.23 , pp. 289-303
    • Wahlbin, L.1
  • 11
    • 0011412428 scopus 로고
    • Time‐stepping Galerkin methods for nonlinear Sobolev partial differential equation
    • 11 R. E. Ewing, Time‐stepping Galerkin methods for nonlinear Sobolev partial differential equation, SIAM J Numer Anal 15 ( 1978), 1125–1150.
    • (1978) SIAM J Numer Anal , vol.15 , pp. 1125-1150
    • Ewing, R.E.1
  • 12
    • 33748953746 scopus 로고
    • Superconvergence of finite element approximation to the solution of a Sobolev equation in a single space variable
    • 12 D. N. Arnold, J. Douglas Jr., and V. Thomée, Superconvergence of finite element approximation to the solution of a Sobolev equation in a single space variable, Math Comput 27 ( 1981), 737–743.
    • (1981) Math Comput , vol.27 , pp. 737-743
    • Arnold, D.N.1    Douglas, J.2    Thomée, V.3
  • 13
    • 0000397513 scopus 로고    scopus 로고
    • A second‐order splitting combined with orthogonal cubic spline collocation method for the roseneau equation
    • 13 S. A. V. Manickam, A. K. Pani, and S. K. Chang, A second‐order splitting combined with orthogonal cubic spline collocation method for the roseneau equation, Numer Methods Partial Diff Equat 14 ( 1998), 695–716.
    • (1998) Numer Methods Partial Diff Equat , vol.14 , pp. 695-716
    • Manickam, S.A.V.1    Pani, A.K.2    Chang, S.K.3
  • 14
    • 33748977285 scopus 로고    scopus 로고
    • The convergence of the fully discrete Galerkin approximations for the Benjamin‐Bona‐Mahony (BBM) equation
    • 14 K. Omrani, The convergence of the fully discrete Galerkin approximations for the Benjamin‐Bona‐Mahony (BBM) equation, Appl Math Comput 180 ( 2006), 614–621.
    • (2006) Appl Math Comput , vol.180 , pp. 614-621
    • Omrani, K.1
  • 15
    • 1842505268 scopus 로고    scopus 로고
    • Exact and numerical traveling wave solutions for nonlinear coupled equations using symbolic computation
    • 15 D. Kaya and I. E. Inan, Exact and numerical traveling wave solutions for nonlinear coupled equations using symbolic computation, Appl Math Comput 151 ( 2004), 775–787.
    • (2004) Appl Math Comput , vol.151 , pp. 775-787
    • Kaya, D.1    Inan, I.E.2
  • 16
    • 0346497913 scopus 로고    scopus 로고
    • A numerical simulation of solitary‐wave solutions of the generalized regularized long‐wave equation
    • 16 D. Kaya, A numerical simulation of solitary‐wave solutions of the generalized regularized long‐wave equation, Appl Math Comput 149 ( 2004), 833–841.
    • (2004) Appl Math Comput , vol.149 , pp. 833-841
    • Kaya, D.1
  • 17
    • 0003588880 scopus 로고
    • Difference methods for initial‐value problems
    • 17 R. D. Richtmyer and K. W. Morton, Difference methods for initial‐value problems, 2nd ed., Wiley, New York, 1967.
    • (1967)
    • Richtmyer, R.D.1    Morton, K.W.2
  • 18
    • 84968504350 scopus 로고
    • On the instabilty of leap‐flog and Crank‐Nicolson approximations of a nonlinear partial differential equation
    • 18 B. Fornberg, On the instabilty of leap‐flog and Crank‐Nicolson approximations of a nonlinear partial differential equation, Math Comput 27 ( 1973), 45–57.
    • (1973) Math Comput , vol.27 , pp. 45-57
    • Fornberg, B.1
  • 19
    • 21144472918 scopus 로고
    • Finite difference discretization of the Kuramoto‐Sivashinsky equation
    • 19 G. D. Akrivis, Finite difference discretization of the Kuramoto‐Sivashinsky equation, Numer Math 63 ( 1992), 1–11.
    • (1992) Numer Math , vol.63 , pp. 1-11
    • Akrivis, G.D.1
  • 20
    • 0036630588 scopus 로고    scopus 로고
    • Finite differnce approximate solutions for the two‐dimensional Burger's system
    • 20 R. Kannan and S. K. Chung, Finite differnce approximate solutions for the two‐dimensional Burger's system, Comput Math Appl 44 ( 2002), 193–200.
    • (2002) Comput Math Appl , vol.44 , pp. 193-200
    • Kannan, R.1    Chung, S.K.2
  • 21
    • 0023331015 scopus 로고
    • Stability analysis of difference schemes for variable coefficient Schrödinger type equations
    • 21 T. F. Chan and L. Shen, Stability analysis of difference schemes for variable coefficient Schrödinger type equations, SIAM J Numer Anal 24 ( 1981), 336–349.
    • (1981) SIAM J Numer Anal , vol.24 , pp. 336-349
    • Chan, T.F.1    Shen, L.2
  • 23
    • 0041520666 scopus 로고    scopus 로고
    • A conservative numerical scheme for a class of nonlinear Schrödinger with wave operator
    • 23 L. Zhang and Q. Chang, A conservative numerical scheme for a class of nonlinear Schrödinger with wave operator, Appl Math Comput 145 ( 2003), 603–612.
    • (2003) Appl Math Comput , vol.145 , pp. 603-612
    • Zhang, L.1    Chang, Q.2
  • 24
    • 0003947270 scopus 로고
    • Application of discrete functional analysis to the finite difference methods
    • 24 Y. Zhou, Application of discrete functional analysis to the finite difference methods, International Academic Publishers, Beijing, 1990.
    • (1990)
    • Zhou, Y.1
  • 26
    • 2942737438 scopus 로고    scopus 로고
    • On the numerical Approach of the enthalpy method for the Stefan problem
    • 26 K. Omrani, On the numerical Approach of the enthalpy method for the Stefan problem, Numer Methods Partial Differ Equat 20 ( 2004), 527–551.
    • (2004) Numer Methods Partial Differ Equat , vol.20 , pp. 527-551
    • Omrani, K.1
  • 27
    • 84867960112 scopus 로고    scopus 로고
    • A second order splitting method for a finite difference scheme for the Sivashinsky equation
    • 27 K. Omrani, A second order splitting method for a finite difference scheme for the Sivashinsky equation, Appl Math Lett 16 ( 2003), 441–445.
    • (2003) Appl Math Lett , vol.16 , pp. 441-445
    • Omrani, K.1
  • 28
    • 26444462611 scopus 로고    scopus 로고
    • Convergence of Galerkin approximations for the Kuramoto‐Tsuzuki equation
    • 28 K. Omrani, Convergence of Galerkin approximations for the Kuramoto‐Tsuzuki equation, Numer Method Partial Differ Equat 21 ( 2005), 961–975.
    • (2005) Numer Method Partial Differ Equat , vol.21 , pp. 961-975
    • Omrani, K.1
  • 29
    • 33845189660 scopus 로고    scopus 로고
    • A second‐order accurate difference scheme on nonuniform meshes for nonlinear heat‐conduction equation
    • 29 K. Omrani, A second‐order accurate difference scheme on nonuniform meshes for nonlinear heat‐conduction equation, Far East J Appl Math 20 ( 2005), 355–365.
    • (2005) Far East J Appl Math , vol.20 , pp. 355-365
    • Omrani, K.1
  • 30
    • 34248347107 scopus 로고    scopus 로고
    • Numerical methods and error analysis for the nonlinear Sivashinsky equation
    • 30 K. Omrani, Numerical methods and error analysis for the nonlinear Sivashinsky equation, Appl Math Comput ( 2007), in press.
    • (2007) Appl Math Comput
    • Omrani, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.