메뉴 건너뛰기




Volumn 2009, Issue , 2009, Pages

Regularized f-measure maximization for feature selection and classification

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; COST BENEFIT ANALYSIS; F MEASURE MAXIMIZATION; HUMAN; INTERMETHOD COMPARISON; METHYLATION; MICROARRAY ANALYSIS; PERFORMANCE; PREDICTION; SAMPLE SIZE; STATISTICAL CONCEPTS; ARTIFICIAL INTELLIGENCE; BIOLOGICAL MODEL; DNA METHYLATION; DNA MICROARRAY; GENE EXPRESSION PROFILING; GENETIC DATABASE; GENETICS; NEOPLASM; ROC CURVE; STATISTICAL MODEL;

EID: 65649149784     PISSN: 11107243     EISSN: 11107251     Source Type: Journal    
DOI: 10.1155/2009/617946     Document Type: Article
Times cited : (18)

References (19)
  • 2
    • 30944468728 scopus 로고    scopus 로고
    • Evaluating technologies for classification and prediction in medicine
    • DOI 10.1002/sim.2431
    • Pepe M. S., Evaluating technologies for classification and prediction in medicine Statistics in Medicine 2005 24 24 3687 3696 (Pubitemid 43115725)
    • (2005) Statistics in Medicine , vol.24 , Issue.24 , pp. 3687-3696
    • Pepe, M.S.1
  • 3
    • 34147122602 scopus 로고    scopus 로고
    • Insights into latent class analysis of diagnostic test performance
    • DOI 10.1093/biostatistics/kxl038
    • Pepe M. S., Janes H., Insights into latent class analysis of diagnostic test performance Biostatistics 2007 8 2 474 484 (Pubitemid 46569606)
    • (2007) Biostatistics , vol.8 , Issue.2 , pp. 474-484
    • Pepe, M.S.1    Janes, H.2
  • 4
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • Provost F., Fawcett T., Robust classification for imprecise environments Machine Learning 2001 42 3 203 231
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 5
    • 26044460461 scopus 로고    scopus 로고
    • The use of receiver operating characteristic curves in biomedical informatics
    • DOI 10.1016/j.jbi.2005.02.008, PII S1532046405000171
    • Lasko T. A., Bhagwat J. G., Zou K. H., Ohno-Machado L., The use of receiver operating characteristic curves in biomedical informatics Journal of Biomedical Informatics 2005 38 5 404 415 (Pubitemid 41405811)
    • (2005) Journal of Biomedical Informatics , vol.38 , Issue.5 , pp. 404-415
    • Lasko, T.A.1    Bhagwat, J.G.2    Zou, K.H.3    Ohno-Machado, L.4
  • 10
    • 65749109798 scopus 로고    scopus 로고
    • Proceedings of European Conference on Artificial Intelligence Workshop on ROC Curve and AI 2004 Valencia, Spain
    • Rakotomamonjy A., Optimizing AUC with Support Vector Machine (SVM) Proceedings of European Conference on Artificial Intelligence Workshop on ROC Curve and AI 2004 Valencia, Spain
    • Optimizing AUC with Support Vector Machine (SVM)
    • Rakotomamonjy, A.1
  • 11
    • 65749108950 scopus 로고    scopus 로고
    • Proceedings of the 16th International Florida Artificial Intelligence Research Society Conference (FLAIRS '03) May 2003 St. Augustine, Fla, USA
    • Musicant D. R., Kumar V., Ozgur A., Optimizing F-measure with support vector machines Proceedings of the 16th International Florida Artificial Intelligence Research Society Conference (FLAIRS '03) May 2003 St. Augustine, Fla, USA 356 360
    • Optimizing F-measure with Support Vector Machines , pp. 356-360
    • Musicant, D.R.1    Kumar, V.2    Ozgur, A.3
  • 12
    • 70349336577 scopus 로고    scopus 로고
    • Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing (HLT-EMNLP '05) October 2005 Vancouver, Canada
    • Jansche M., Maximum expected F-measure training of logistic regression models Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing (HLT-EMNLP '05) October 2005 Vancouver, Canada 692 699
    • Maximum expected F-measure training of logistic regression models , pp. 692-699
    • Jansche, M.1
  • 14
    • 0031015557 scopus 로고    scopus 로고
    • The lasso method for variable selection in the cox model
    • DOI 10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2- 3
    • Tibshirani R., The lasso method for variable selection in the Cox model Statistics in Medicine 1997 16 4 385 395 (Pubitemid 27073009)
    • (1997) Statistics in Medicine , vol.16 , Issue.4 , pp. 385-395
    • Tibshirani, R.1
  • 15
    • 33746154240 scopus 로고    scopus 로고
    • The doubly regularized support vector machine
    • Wang L., Zhu J., Zou H., The doubly regularized support vector machine Statistica Sinica 2006 16 2 589 615
    • (2006) Statistica Sinica , vol.16 , Issue.2 , pp. 589-615
    • Wang, L.1    Zhu, J.2    Zou, H.3
  • 16
    • 0001345577 scopus 로고
    • Quasi-Newton methods and their application to function minimization
    • Broyden C. G., Quasi-Newton methods and their application to function minimization Mathematics of Computation 1967 21 99 368 381
    • (1967) Mathematics of Computation , vol.21 , Issue.99 , pp. 368-381
    • Broyden, C.G.1
  • 18
    • 4444237023 scopus 로고    scopus 로고
    • A comparison of cluster analysis methods using DNA methylation data
    • DOI 10.1093/bioinformatics/bth176
    • Siegmund K. D., Laird P. W., Laird-Offringa I. A., A comparison of cluster analysis methods using DNA methylation data Bioinformatics 2004 20 12 1896 1904 (Pubitemid 39199053)
    • (2004) Bioinformatics , vol.20 , Issue.12 , pp. 1896-1904
    • Siegmund, K.D.1    Laird, P.W.2    Laird-Offringa, I.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.