메뉴 건너뛰기




Volumn 5, Issue 1, 2009, Pages 187-192

Classifying spare parts inventory using an ANN and particle swarm optimization approach

Author keywords

Artificial neural networks; Classification; Particle swarm optimization; Spare part

Indexed keywords

ABC CLASSIFICATION; ANALYTICAL TOOL; ARTIFICIAL NEURAL NETWORKS; BP ALGORITHM; CLASSIFICATION; CLASSIFICATION ABILITY; DATA SETS; EMPIRICAL FINDINGS; LEARNING METHODS; PARTICLE SWARM; PREDICTIVE ACCURACY; PSO ALGORITHMS; RECOGNITION RATES; SPARE PART; SPARE PARTS; SPARE PARTS INVENTORIES;

EID: 65649134423     PISSN: 15539105     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (2)

References (10)
  • 1
    • 0347593831 scopus 로고    scopus 로고
    • Inventory control of spare parts using a Bayesian approach: A case study
    • K. P. Aronis, I. Magou, R. Dekker. Inventory Control of Spare Parts Using a Bayesian Approach: A Case Study. European Journal of Operations Research, Vol. 154, pp. 730-739, 2004
    • (2004) European Journal of Operations Research , vol.154 , pp. 730-739
    • Aronis, K.P.1    Magou, I.2    Dekker, R.3
  • 2
    • 0007713614 scopus 로고
    • Operations related groups (ORGS): A clustering procedure for production/inventory systems
    • R. Ernst, M. A. Cohen. Operations Related Groups (ORGs): A Clustering Procedure for Production/inventory Systems. Journal of Operations Management, Vol. 94, pp. 574-598, 1990
    • (1990) Journal of Operations Management , vol.94 , pp. 574-598
    • Ernst, R.1    Cohen, M.A.2
  • 3
    • 0028402556 scopus 로고
    • The analytic hierarchy process as applied to two types of inventory problems
    • F. Y. Partovi, W. E. Hopton. The analytic hierarchy process as applied to two types of inventory problems. Production and Inventory Management Journal, Vol. 35, pp. 13-19, 1994
    • (1994) Production and Inventory Management Journal , vol.35 , pp. 13-19
    • Partovi, F.Y.1    Hopton, W.E.2
  • 4
    • 33751190084 scopus 로고    scopus 로고
    • The expert system for assessing customer satisfaction on fragrance notes: using artificial neural networks
    • K. Athakorn, W. Worrapon. The Expert System for Assessing Customer Satisfaction on Fragrance Notes: Using Artificial Neural Networks. Computers and Industrial Engineering, Vol. 51, pp. 567-584, 2006
    • (2006) Computers and Industrial Engineering , vol.51 , pp. 567-584
    • Athakorn, K.1    Worrapon, W.2
  • 5
    • 34548679361 scopus 로고    scopus 로고
    • Genetic algorithms for portfolio selection problems with minimum transaction lots
    • C. C. Lin, Y. T. Liu. Genetic Algorithms for Portfolio Selection Problems with Minimum Transaction Lots. European Journal of Operational Research, Vol. 185, pp. 393-404, 2008
    • (2008) European Journal of Operational Research , vol.185 , pp. 393-404
    • Lin, C.C.1    Liu, Y.T.2
  • 7
    • 29244467994 scopus 로고    scopus 로고
    • Particle swarm optimization approaches to coevolve strategies for the iterated prisoner's dilemma
    • N. Franken, A. P. Engelbrecht. Particle Swarm Optimization Approaches to Coevolve Strategies for the Iterated Prisoner's Dilemma. IEEE Transactions on Evolutionary Computation, Vol. 9, No. 6, pp. 562-579, 2005
    • (2005) IEEE Transactions on Evolutionary Computation , vol.9 , Issue.6 , pp. 562-579
    • Franken, N.1    Engelbrecht, A.P.2
  • 8
    • 33846242207 scopus 로고    scopus 로고
    • Application of particle swarm optimisation in artificial neural network for the prediction of tool life
    • U. Natarajan, V. M. Periasamy, R. Saravanan. Application of Particle Swarm Optimisation in Artificial Neural Network for the Prediction of Tool Life. Int. J. of Advanced Manufacture Technology, Vol. 31, pp. 871-876, 2007
    • (2007) Int. J. of Advanced Manufacture Technology , vol.31 , pp. 871-876
    • Natarajan, U.1    Periasamy, V.M.2    Saravanan, R.3
  • 9
    • 33847379879 scopus 로고    scopus 로고
    • A hybrid particle swarm optimization-back-propagation algorithm for feed forward neural network training
    • J. R. Zhang, J. Zhang, T. M. Lok, et al. A Hybrid Particle Swarm Optimization-Back-Propagation Algorithm for Feed Forward Neural Network Training. Applied Mathematics and Computation, Vol. 185, pp. 1026-1037, 2006
    • (2006) Applied Mathematics and Computation , vol.185 , pp. 1026-1037
    • Zhang, J.R.1    Zhang, J.2    Lok, T.M.3
  • 10
    • 30744437401 scopus 로고    scopus 로고
    • Particle swarm optimization for resource-constrained project scheduling
    • H. Zhang, H. Li, C. M. Tam. Particle Swarm Optimization for Resource-constrained Project Scheduling. International Journal of Project Management, Vol. 24, No. 1, pp. 83-92, 2006
    • (2006) International Journal of Project Management , vol.24 , Issue.1 , pp. 83-92
    • Zhang, H.1    Li, H.2    Tam, C.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.