메뉴 건너뛰기




Volumn , Issue , 2008, Pages 399-407

Effective and efficient itemset pattern summarization: Regression-based approaches

Author keywords

Frequency restoration; Pattern summarization; Regression

Indexed keywords

CLUSTERING METHODS; COMPUTATIONAL COSTS; DECISION-TREE; EXPERIMENTAL EVALUATIONS; FREQUENCY RESTORATION; FREQUENT ITEM SETS; FREQUENT ITEMSET; ITEM SETS; ITEMSET; K-MEANS; LINEAR REGRESSION PROBLEMS; LOCAL MINIMUMS; NON-LINEAR REGRESSIONS; NONLINEAR REGRESSION PROBLEMS; PATTERN SUMMARIZATION; PROBABILISTIC MODELS; REGRESSION; RESTORATION ERRORS; SYNTHETIC DATA SETS; TOP DOWNS;

EID: 65449166491     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1401890.1401941     Document Type: Conference Paper
Times cited : (33)

References (32)
  • 1
    • 65449157897 scopus 로고    scopus 로고
    • The r project for statistical computing. http://www.r-project.org/.
  • 2
    • 12244313034 scopus 로고    scopus 로고
    • Foto Afrati, Aristides Gionis, and Heikki Mannila. Approximating a collection of frequent sets. In KDD, 2004.
    • Foto Afrati, Aristides Gionis, and Heikki Mannila. Approximating a collection of frequent sets. In KDD, 2004.
  • 8
    • 33847406228 scopus 로고    scopus 로고
    • Non-derivable itemset mining
    • Toon Calders and Bart Goethals. Non-derivable itemset mining. Data Min. Knowl. Discov., 14(1): 171-206, 2007.
    • (2007) Data Min. Knowl. Discov , vol.14 , Issue.1 , pp. 171-206
    • Calders, T.1    Goethals, B.2
  • 11
    • 78149328321 scopus 로고    scopus 로고
    • Mining top-k frequent closed patterns without minimum support
    • Jiawei Han, Jianyong Wang, Ying Lu, and Petre Tzvetkov. Mining top-k frequent closed patterns without minimum support. In ICDM, 2002.
    • (2002) ICDM
    • Han, J.1    Wang, J.2    Lu, Y.3    Tzvetkov, P.4
  • 15
    • 33749588822 scopus 로고    scopus 로고
    • A systematic approach for optimizing complex mining tasks on multiple dataseis
    • Ruoming Jin and Gagan Agrawal. A systematic approach for optimizing complex mining tasks on multiple dataseis. In Proceedings of the ICDE Conference, 2006.
    • (2006) Proceedings of the ICDE Conference
    • Jin, R.1    Agrawal, G.2
  • 16
    • 0001880210 scopus 로고    scopus 로고
    • KDD-Cup 2000 organizers' report: Peeling the onion
    • Ron Kohavi, Carla Brodley, Brian Frasca, Llew Mason, and Zijian Zheng. KDD-Cup 2000 organizers' report: Peeling the onion. SIGKDD Explorations, 2(2):86-98, 2000. http://www.ecn.purdue.edu/KDDCUP.
    • (2000) SIGKDD Explorations , vol.2 , Issue.2 , pp. 86-98
    • Kohavi, R.1    Brodley, C.2    Frasca, B.3    Mason, L.4    Zheng, Z.5
  • 18
    • 70349946920 scopus 로고    scopus 로고
    • Computing frequent itemsets inside oracle 10g
    • Wei Li and Ari Mozes. Computing frequent itemsets inside oracle 10g. In VLDB, pages 1253-1256, 2004.
    • (2004) VLDB , pp. 1253-1256
    • Li, W.1    Mozes, A.2
  • 20
    • 0242496221 scopus 로고    scopus 로고
    • Beyond independence: Probabilistic models for query approximation on binary transaction data
    • Dmitry Pavlov, Heikki Mannila, and Padhraic Smyth. Beyond independence: Probabilistic models for query approximation on binary transaction data. IEEE Trans. Knowl. Data Eng., 15(6): 1409-1421, 2003.
    • (2003) IEEE Trans. Knowl. Data Eng , vol.15 , Issue.6 , pp. 1409-1421
    • Pavlov, D.1    Mannila, H.2    Smyth, P.3
  • 21
    • 0032091573 scopus 로고    scopus 로고
    • Jr. Roberto J. Bayardo. Efficiently mining long patterns from databases. In SIGMOD '98: Proceedings of the 1998 ACM SIGMOD international conference on Management of data, 1998.
    • Jr. Roberto J. Bayardo. Efficiently mining long patterns from databases. In SIGMOD '98: Proceedings of the 1998 ACM SIGMOD international conference on Management of data, 1998.
  • 23
    • 65449120961 scopus 로고    scopus 로고
    • Craig Utley. Microsoft sql server 9.0 technical articles: Introduction to sql server 2005 data mining. http://technet.microsoft.com/en-us/library/ ms345131.aspx.
    • Craig Utley. Microsoft sql server 9.0 technical articles: Introduction to sql server 2005 data mining. http://technet.microsoft.com/en-us/library/ ms345131.aspx.
  • 24
    • 33749579068 scopus 로고    scopus 로고
    • Chao Wang and Srinivasan Parthasarathy. Summarizing itemset patterns using probabilistic models. In KDD, 2006.
    • Chao Wang and Srinivasan Parthasarathy. Summarizing itemset patterns using probabilistic models. In KDD, 2006.
  • 25
    • 12244307653 scopus 로고    scopus 로고
    • State of the art of graph-based data mining
    • 59-68
    • Takashi Washio and Hiroshi Motoda. State of the art of graph-based data mining. SIGKDD Explor. Newsl., 5(1):59-68, 2003.
    • (2003) SIGKDD Explor. Newsl , vol.5 , Issue.1
    • Washio, T.1    Motoda, H.2
  • 26
    • 33749551116 scopus 로고    scopus 로고
    • Dong Xin, Hong Cheng, Xifeng Yan, and Jiawei Han. Extracting redundancy-aware top-k patterns. In KDD, 2006.
    • Dong Xin, Hong Cheng, Xifeng Yan, and Jiawei Han. Extracting redundancy-aware top-k patterns. In KDD, 2006.
  • 27
    • 33745458995 scopus 로고    scopus 로고
    • Mining compressed frequent-pattern sets
    • Dong Xin, Jiawei Han, Xifeng Yan, and Hong Cheng. Mining compressed frequent-pattern sets. In VLDB, 2005.
    • (2005) VLDB
    • Xin, D.1    Han, J.2    Yan, X.3    Cheng, H.4
  • 28
    • 32344439809 scopus 로고    scopus 로고
    • Xifeng Yan, Hong Cheng, Jiawei Han, and Dong Xin. Summarizing itemset patterns: a profile-based approach. In KDD, 2005.
    • Xifeng Yan, Hong Cheng, Jiawei Han, and Dong Xin. Summarizing itemset patterns: a profile-based approach. In KDD, 2005.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.