메뉴 건너뛰기




Volumn 53, Issue 1, 2008, Pages 123-136

Gaussian processes and limiting linear models

Author keywords

[No Author keywords available]

Indexed keywords

EXTRACTION; GAUSSIAN DISTRIBUTION; GAUSSIAN NOISE (ELECTRONIC); LINEARIZATION; TRELLIS CODES;

EID: 49649097400     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2008.06.020     Document Type: Article
Times cited : (35)

References (28)
  • 2
    • 33746577251 scopus 로고    scopus 로고
    • Princeton University Press, Princeton, NJ
    • Bernstein D. Matrix Mathematics (2005), Princeton University Press, Princeton, NJ
    • (2005) Matrix Mathematics
    • Bernstein, D.1
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 24 2 (1996) 123-140
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 4
    • 34548023081 scopus 로고    scopus 로고
    • Dynamic factor process convolution models for multivariate spacetime data with application to air quality assessment
    • Calder C.A. Dynamic factor process convolution models for multivariate spacetime data with application to air quality assessment. Environmental and Ecological Statistics 14 (2007) 229-247
    • (2007) Environmental and Ecological Statistics , vol.14 , pp. 229-247
    • Calder, C.A.1
  • 8
    • 1242331293 scopus 로고    scopus 로고
    • Bayesian support vector regression using a unified loss function
    • Chu W., Keerthi S.S., and Ong C.J. Bayesian support vector regression using a unified loss function. IEEE Transactions on Neural Networks 15 1 (2004) 29-44
    • (2004) IEEE Transactions on Neural Networks , vol.15 , Issue.1 , pp. 29-44
    • Chu, W.1    Keerthi, S.S.2    Ong, C.J.3
  • 12
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman J.H. Multivariate adaptive regression splines. Annals of Statistics 19 1 (1991) 1-67
    • (1991) Annals of Statistics , vol.19 , Issue.1 , pp. 1-67
    • Friedman, J.H.1
  • 14
    • 0000647838 scopus 로고    scopus 로고
    • Variable selection and model comparison in regression
    • Bernardo J., Berger J., Dawid A., and Smith A. (Eds), Oxford Press
    • Geweke J. Variable selection and model comparison in regression. In: Bernardo J., Berger J., Dawid A., and Smith A. (Eds). In Bayesian Statistics vol. 5 (1996), Oxford Press 609-620
    • (1996) In Bayesian Statistics , vol.5 , pp. 609-620
    • Geweke, J.1
  • 16
    • 22344448360 scopus 로고    scopus 로고
    • Statistical models for monitoring and regulating ground-level ozone
    • Gilleland E., and Nychka D. Statistical models for monitoring and regulating ground-level ozone. Environmetrics 16 (2005) 535-546
    • (2005) Environmetrics , vol.16 , pp. 535-546
    • Gilleland, E.1    Nychka, D.2
  • 18
    • 49649128701 scopus 로고    scopus 로고
    • tgp: An R package for bayesian nonstationary, semiparametric nonlinear regression and design by treed gaussian process models
    • 9
    • Gramacy R.B. tgp: An R package for bayesian nonstationary, semiparametric nonlinear regression and design by treed gaussian process models. Journal of Statistical Software 19 (2007) 9
    • (2007) Journal of Statistical Software , vol.19
    • Gramacy, R.B.1
  • 19
    • 54949111733 scopus 로고    scopus 로고
    • Gramacy, R.B., Lee, H.K.H., 2008. Bayesian treed Gaussian process models with an application to computer modeling. Journal of the American Statistical Association (in press)
    • Gramacy, R.B., Lee, H.K.H., 2008. Bayesian treed Gaussian process models with an application to computer modeling. Journal of the American Statistical Association (in press)
  • 20
    • 49649119990 scopus 로고    scopus 로고
    • Gramacy, R.B., Taddy, M.A., 2008. tgp: Bayesian treed Gaussian process models. R package version 2.1-2
    • Gramacy, R.B., Taddy, M.A., 2008. tgp: Bayesian treed Gaussian process models. R package version 2.1-2
  • 24
    • 49649117300 scopus 로고    scopus 로고
    • Neal, R., 1997. Monte Carlo implementation of Gaussian process models for Bayesian regression and classification. Tech. Rep. CRG-TR-97-2, Dept. of Computer Science, University of Toronto
    • Neal, R., 1997. Monte Carlo implementation of Gaussian process models for Bayesian regression and classification. Tech. Rep. CRG-TR-97-2, Dept. of Computer Science, University of Toronto
  • 26
    • 49649123590 scopus 로고    scopus 로고
    • R Development Core Team, 2004. R : A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Aus. ISBN 3-900051-00-3
    • R Development Core Team, 2004. R : A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Aus. ISBN 3-900051-00-3
  • 28
    • 0001995852 scopus 로고
    • Some aspects of the spline smoothing approach to non-parametric curve fitting
    • Silverman B.W. Some aspects of the spline smoothing approach to non-parametric curve fitting. Journal of the Royal Statistical Society Series B 47 (1985) 1-52
    • (1985) Journal of the Royal Statistical Society Series B , vol.47 , pp. 1-52
    • Silverman, B.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.