-
2
-
-
33746577251
-
-
Princeton University Press, Princeton, NJ
-
Bernstein D. Matrix Mathematics (2005), Princeton University Press, Princeton, NJ
-
(2005)
Matrix Mathematics
-
-
Bernstein, D.1
-
3
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Machine Learning 24 2 (1996) 123-140
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
4
-
-
34548023081
-
Dynamic factor process convolution models for multivariate spacetime data with application to air quality assessment
-
Calder C.A. Dynamic factor process convolution models for multivariate spacetime data with application to air quality assessment. Environmental and Ecological Statistics 14 (2007) 229-247
-
(2007)
Environmental and Ecological Statistics
, vol.14
, pp. 229-247
-
-
Calder, C.A.1
-
8
-
-
1242331293
-
Bayesian support vector regression using a unified loss function
-
Chu W., Keerthi S.S., and Ong C.J. Bayesian support vector regression using a unified loss function. IEEE Transactions on Neural Networks 15 1 (2004) 29-44
-
(2004)
IEEE Transactions on Neural Networks
, vol.15
, Issue.1
, pp. 29-44
-
-
Chu, W.1
Keerthi, S.S.2
Ong, C.J.3
-
10
-
-
0003737404
-
-
Springer-Verlag New York, Inc, New York, NY, USA
-
Dey D., Müller P., and Sinha D. Practical Nonparametric and Semiparametric Bayesian Statistics (1998), Springer-Verlag New York, Inc, New York, NY, USA
-
(1998)
Practical Nonparametric and Semiparametric Bayesian Statistics
-
-
Dey, D.1
Müller, P.2
Sinha, D.3
-
11
-
-
84899013173
-
Support vector regression machines
-
MIT Press
-
Drucker H., Burges C.J.C., Kaufman L., Smola A.J., and Vapnik V. Support vector regression machines. Advances in Neural Information Processing Systems (1996), MIT Press 155-161
-
(1996)
Advances in Neural Information Processing Systems
, pp. 155-161
-
-
Drucker, H.1
Burges, C.J.C.2
Kaufman, L.3
Smola, A.J.4
Vapnik, V.5
-
12
-
-
0002432565
-
Multivariate adaptive regression splines
-
Friedman J.H. Multivariate adaptive regression splines. Annals of Statistics 19 1 (1991) 1-67
-
(1991)
Annals of Statistics
, vol.19
, Issue.1
, pp. 1-67
-
-
Friedman, J.H.1
-
14
-
-
0000647838
-
Variable selection and model comparison in regression
-
Bernardo J., Berger J., Dawid A., and Smith A. (Eds), Oxford Press
-
Geweke J. Variable selection and model comparison in regression. In: Bernardo J., Berger J., Dawid A., and Smith A. (Eds). In Bayesian Statistics vol. 5 (1996), Oxford Press 609-620
-
(1996)
In Bayesian Statistics
, vol.5
, pp. 609-620
-
-
Geweke, J.1
-
16
-
-
22344448360
-
Statistical models for monitoring and regulating ground-level ozone
-
Gilleland E., and Nychka D. Statistical models for monitoring and regulating ground-level ozone. Environmetrics 16 (2005) 535-546
-
(2005)
Environmetrics
, vol.16
, pp. 535-546
-
-
Gilleland, E.1
Nychka, D.2
-
18
-
-
49649128701
-
tgp: An R package for bayesian nonstationary, semiparametric nonlinear regression and design by treed gaussian process models
-
9
-
Gramacy R.B. tgp: An R package for bayesian nonstationary, semiparametric nonlinear regression and design by treed gaussian process models. Journal of Statistical Software 19 (2007) 9
-
(2007)
Journal of Statistical Software
, vol.19
-
-
Gramacy, R.B.1
-
19
-
-
54949111733
-
-
Gramacy, R.B., Lee, H.K.H., 2008. Bayesian treed Gaussian process models with an application to computer modeling. Journal of the American Statistical Association (in press)
-
Gramacy, R.B., Lee, H.K.H., 2008. Bayesian treed Gaussian process models with an application to computer modeling. Journal of the American Statistical Association (in press)
-
-
-
-
20
-
-
49649119990
-
-
Gramacy, R.B., Taddy, M.A., 2008. tgp: Bayesian treed Gaussian process models. R package version 2.1-2
-
Gramacy, R.B., Taddy, M.A., 2008. tgp: Bayesian treed Gaussian process models. R package version 2.1-2
-
-
-
-
24
-
-
49649117300
-
-
Neal, R., 1997. Monte Carlo implementation of Gaussian process models for Bayesian regression and classification. Tech. Rep. CRG-TR-97-2, Dept. of Computer Science, University of Toronto
-
Neal, R., 1997. Monte Carlo implementation of Gaussian process models for Bayesian regression and classification. Tech. Rep. CRG-TR-97-2, Dept. of Computer Science, University of Toronto
-
-
-
-
26
-
-
49649123590
-
-
R Development Core Team, 2004. R : A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Aus. ISBN 3-900051-00-3
-
R Development Core Team, 2004. R : A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Aus. ISBN 3-900051-00-3
-
-
-
-
27
-
-
2442422663
-
-
Springer-Verlag, New York, NY
-
Santner T.J., Williams B.J., and Notz W.I. The Design and Analysis of Computer Experiments (2003), Springer-Verlag, New York, NY
-
(2003)
The Design and Analysis of Computer Experiments
-
-
Santner, T.J.1
Williams, B.J.2
Notz, W.I.3
-
28
-
-
0001995852
-
Some aspects of the spline smoothing approach to non-parametric curve fitting
-
Silverman B.W. Some aspects of the spline smoothing approach to non-parametric curve fitting. Journal of the Royal Statistical Society Series B 47 (1985) 1-52
-
(1985)
Journal of the Royal Statistical Society Series B
, vol.47
, pp. 1-52
-
-
Silverman, B.W.1
|