메뉴 건너뛰기




Volumn 17, Issue 2, 2008, Pages 178-187

Prediction of standard particleboard mechanical properties utilizing an artificial neural network and subsequent comparison with a multivariate regression model;Predicción de propiedades mecánicas del partículas estándar mediante una red neuronal artifical y comparación con un modelo de regresión multivariante

Author keywords

ANN; Physico mechanical properties; Predictive model; Regression fit; Wood based panels

Indexed keywords


EID: 65249191349     PISSN: 11317965     EISSN: None     Source Type: Journal    
DOI: 10.5424/srf/2008172-01033     Document Type: Article
Times cited : (53)

References (52)
  • 1
    • 65249160559 scopus 로고
    • Tableros de partículas. Ensayos
    • ASOCIACIÓN ESPAÑOLA DE NORMALIZACIÓN (AENOR), Standard UNE 56713. Madrid, España
    • ASOCIACIÓN ESPAÑOLA DE NORMALIZACIÓN (AENOR), 1971. Tableros de partículas. Ensayos. Determinación de la hinchazón y de la absorción de agua por inmersión total. Standard UNE 56713. Madrid, España.
    • (1971) Determinación de la hinchazón y de la absorción de agua por inmersión total
  • 2
    • 65249190769 scopus 로고
    • Tableros derivados de la madera
    • ASOCIACIÓN ESPAÑOLA DE NORMALIZACIÓN (AENOR), Standard UNE-EN 310. Madrid, España
    • ASOCIACIÓN ESPAÑOLA DE NORMALIZACIÓN (AENOR), 1994a. Tableros derivados de la madera. Determinación del módulo de elasticidad en flexión y de la resistencia a la flexión. Standard UNE-EN 310. Madrid, España.
    • (1994) Determinación del módulo de elasticidad en flexión y de la resistencia a la flexión
  • 3
    • 65249185540 scopus 로고
    • Tableros de partículas y tableros de fibras
    • ASOCIACIÓN ESPAÑOLA DE NORMALIZACIÓN (AENOR), Standard UNE-EN 319. Madrid, España
    • ASOCIACIÓN ESPAÑOLA DE NORMALIZACIÓN (AENOR), 1994b. Tableros de partículas y tableros de fibras. Determinación de la resistencia a la tracción perpendicular a las caras del tablero. Standard UNE-EN 319. Madrid, España.
    • (1994) Determinación de la resistencia a la tracción perpendicular a las caras del tablero
  • 4
    • 65249104524 scopus 로고
    • Tableros derivados de la madera
    • ASOCIACIÓN ESPAÑOLA DE NORMALIZACIÓN (AENOR), Standard UNE-EN 322. Madrid, España
    • ASOCIACIÓN ESPAÑOLA DE NORMALIZACIÓN (AENOR), 1994c. Tableros derivados de la madera. Determinación del contenido de humedad. Standard UNE-EN 322. Madrid, España.
    • (1994) Determinación del contenido de humedad. Standard UNE-EN 322
  • 5
    • 65249164832 scopus 로고
    • Tableros derivados de la madera
    • ASOCIACIÓN ESPAÑOLA DE NORMALIZACIÓN (AENOR), Standard UNE-EN 323. Madrid, España
    • ASOCIACIÓN ESPAÑOLA DE NORMALIZACIÓN (AENOR), 1994d. Tableros derivados de la madera. Determinación de la densidad. Standard UNE-EN 323. Madrid, España.
    • (1994) Determinación de la densidad
  • 6
    • 65249137630 scopus 로고
    • Tableros derivados de la madera
    • ASOCIACIÓN ESPAÑOLA DE NORMALIZACIÓN (AENOR), Standard UNE-EN 325. Madrid, España
    • ASOCIACIÓN ESPAÑOLA DE NORMALIZACIÓN (AENOR), 1994e. Tableros derivados de la madera. Determinación de las dimensiones de las probetas. Standard UNE-EN 325. Madrid, España.
    • (1994) Determinación de las dimensiones de las probetas
  • 7
    • 65249131139 scopus 로고
    • Tableros derivados de la madera. Muestreo e inspección
    • ASOCIACIÓN ESPAÑOLA DE NORMALIZACIÓN (AENOR), Standard UNEEN 326-1. Madrid, España
    • ASOCIACIÓN ESPAÑOLA DE NORMALIZACIÓN (AENOR), 1995. Tableros derivados de la madera. Muestreo e inspección. Parte 1: Muestreo y despiece de probetas y expresión de los resultados de ensayo. Standard UNEEN 326-1. Madrid, España.
    • (1995) Parte 1: Muestreo y despiece de probetas y expresión de los resultados de ensayo
  • 8
    • 65249094771 scopus 로고    scopus 로고
    • Tableros derivados de la madera. Muestreo, despiece e inspección
    • ASOCIACIÓN ESPAÑOLA DE NORMALIZACIÓN (AENOR), Standard UNE-EN 326-2. Madrid, España
    • ASOCIACIÓN ESPAÑOLA DE NORMALIZACIÓN (AENOR), 2001. Tableros derivados de la madera. Muestreo, despiece e inspección. Parte 2: Control de la calidad en fábrica. Standard UNE-EN 326-2. Madrid, España.
    • (2001) Parte 2: Control de la calidad en fábrica
  • 9
    • 65249091384 scopus 로고    scopus 로고
    • Tablero de Partículas
    • ASOCIACIÓN ESPAÑOLA DE NORMALIZACIÓN (AENOR), Standard UNE-EN 312. Madrid, España
    • ASOCIACIÓN ESPAÑOLA DE NORMALIZACIÓN (AENOR), 2004. Tablero de Partículas. Especificaciones. Standard UNE-EN 312. Madrid, España.
    • (2004) Especificaciones
  • 10
    • 27844488031 scopus 로고    scopus 로고
    • Predicting wood thermal conductivity using artificial neural networks
    • AVRAMIDIS S., ILIADIS L., 2005a. Predicting wood thermal conductivity using artificial neural networks. Wood Fiber Sci 37(4), 682-690.
    • (2005) Wood Fiber Sci , vol.37 , Issue.4 , pp. 682-690
    • Avramidis, S.1    Iliadis, L.2
  • 11
    • 21844453935 scopus 로고    scopus 로고
    • Wood-water sorption isotherm prediction with artificial neural networks: A preliminary study
    • AVRAMIDIS S., ILIADIS L., 2005b. Wood-water sorption isotherm prediction with artificial neural networks: a preliminary study. Holzforschung 59, 336-341.
    • (2005) Holzforschung , vol.59 , pp. 336-341
    • Avramidis, S.1    Iliadis, L.2
  • 12
    • 11844250643 scopus 로고    scopus 로고
    • Influence of board density, mat construction, and chip type on performance of particleboard made from eastern red cedar
    • CAI Z., WU Q., LEE J., HIZIROGLU S., 2004. Influence of board density, mat construction, and chip type on performance of particleboard made from eastern red cedar. Forest Prod. J 54(12), 226-232.
    • (2004) Forest Prod. J , vol.54 , Issue.12 , pp. 226-232
    • Cai, Z.1    Wu, Q.2    Lee, J.3    Hiziroglu, S.4
  • 13
    • 0031122208 scopus 로고    scopus 로고
    • Predicting the internal bond strength of particleboard, utilizing a radial basis function neural network
    • COOK D.F., CHIU C.C., 1997. Predicting the internal bond strength of particleboard, utilizing a radial basis function neural network. Eng Appl Artif Intell 10(2), 171-177.
    • (1997) Eng Appl Artif Intell , vol.10 , Issue.2 , pp. 171-177
    • Cook, D.F.1    Chiu, C.C.2
  • 14
    • 8344277598 scopus 로고
    • A neural network to predict particleboard manufacturing process parameters
    • COOK D.F., MASSEY J.G., SHANNON R.E., 1991. A neural network to predict particleboard manufacturing process parameters. For Sci 5, 1463-1478.
    • (1991) For Sci , vol.5 , pp. 1463-1478
    • Cook, D.F.1    Massey, J.G.2    Shannon, R.E.3
  • 15
    • 0033726694 scopus 로고    scopus 로고
    • Combining a neural network with a genetic algorithm for process parameter optimization
    • COOK D.F., RAGSDALE C.T., MAJOR R.L., 2000. Combining a neural network with a genetic algorithm for process parameter optimization. Eng Appl Artif Intell 13, 391-396.
    • (2000) Eng Appl Artif Intell , vol.13 , pp. 391-396
    • Cook, D.F.1    Ragsdale, C.T.2    Major, R.L.3
  • 16
    • 65249147707 scopus 로고
    • Neural network models for prediction of process parameters in wood products manufacturing
    • st Industrial Engineering Research Conference, Chicago, 20-21 May
    • st Industrial Engineering Research Conference, Chicago, 20-21 May. pp. 209-211.
    • (1992) , pp. 209-211
    • Cook, D.F.1    Whittaker, A.D.2
  • 17
    • 38248998838 scopus 로고
    • Neural-network process modelling of a continuous manufacturing operation
    • COOK D.B. WHITTAKER, A.D., 1993. Neural-network process modelling of a continuous manufacturing operation. Eng Appl Artif Intell 6, 559-564.
    • (1993) Eng Appl Artif Intell , vol.6 , pp. 559-564
    • Cook, D.B.1    Whittaker, A.D.2
  • 19
    • 0003396255 scopus 로고    scopus 로고
    • Neural Network Toolbox user's guide, version 4
    • MA 01760, USA
    • DEMUTH H., BEALE M., HAGAN M., 2002. Neural Network Toolbox user's guide, version 4. Natick: The Mathworks Inc, MA 01760, USA. 808 pp.
    • (2002) Natick: The Mathworks Inc , pp. 808
    • Demuth, H.1    Beale, M.2    Hagan, M.3
  • 20
    • 22544487549 scopus 로고    scopus 로고
    • Artificial neural networks as an alternative tool in pine bark volume estimation
    • DIAMANTOPOULOU M.J., 2005. Artificial neural networks as an alternative tool in pine bark volume estimation. Comput Electron Agric 48, 235-244.
    • (2005) Comput Electron Agric , vol.48 , pp. 235-244
    • Diamantopoulou, M.J.1
  • 21
    • 0031649938 scopus 로고    scopus 로고
    • A decision tree of neural networks for classifying images of wood veneer
    • DRAKE P.R., PACKIANATHER M.S., 1998. A decision tree of neural networks for classifying images of wood veneer. Int J Adv Manuf Technol 14, 280-285.
    • (1998) Int J Adv Manuf Technol , vol.14 , pp. 280-285
    • Drake, P.R.1    Packianather, M.S.2
  • 22
  • 23
    • 65249097178 scopus 로고    scopus 로고
    • Use of an artificial neural network to differentiate the wood of Juniperus cedrusWebb & Bertel and Juniperus canariensis Guyot
    • Pan-American IAWA Meeting 2007, San Luis Potosi, México, July 15-20
    • GARCÍA FERNÁNDEZ F., GARCÍA ESTEBAN L., DE PALACIOS DE PALACIOS P., GUINDEO CASASÚS A., 2007. Use of an artificial neural network to differentiate the wood of Juniperus cedrusWebb & Bertel and Juniperus canariensis Guyot. Pan-American IAWA Meeting 2007, San Luis Potosi, México, July 15-20.
    • (2007)
    • García Fernández, F.1    García Esteban, L.2    de Palacios de Palacios, P.3    Guindeo Casasús, A.4
  • 25
    • 0008892475 scopus 로고
    • Prediction of particleboard mechanical properties at various moisture contents
    • HALLIGAN A.F., SCHNIEWIND A.P., 1974. Prediction of particleboard mechanical properties at various moisture contents. Wood Sci Technol 8(1), 68-78.
    • (1974) Wood Sci Technol , vol.8 , Issue.1 , pp. 68-78
    • Halligan, A.F.1    Schniewind, A.P.2
  • 26
    • 1342290864 scopus 로고    scopus 로고
    • Effect of board density on bending properties and dimensional stabilities of MDF-reinforced corrugated particleboard
    • HAYASHI K., OHMI M., TOMINAGA H., FAKUDA K., 2003. Effect of board density on bending properties and dimensional stabilities of MDF-reinforced corrugated particleboard. J Wood Sci 49, 398-404.
    • (2003) J Wood Sci , vol.49 , pp. 398-404
    • Hayashi, K.1    Ohmi, M.2    Tominaga, H.3    Fakuda, K.4
  • 29
    • 0026213477 scopus 로고
    • Validation samples
    • HIRSCH R.P., 1991. Validation samples. Biometrics 47(3), 1193-1194.
    • (1991) Biometrics , vol.47 , Issue.3 , pp. 1193-1194
    • Hirsch, R.P.1
  • 31
    • 0031995081 scopus 로고    scopus 로고
    • Classification of wood species by neural network analysis of ultrasonic signals
    • JORDAN R., FEENEY F., NESBITT N., EVERTSEN J.A., 1998. Classification of wood species by neural network analysis of ultrasonic signals. Ultrasonic 36, 219-222.
    • (1998) Ultrasonic , vol.36 , pp. 219-222
    • Jordan, R.1    Feeney, F.2    Nesbitt, N.3    Evertsen, J.A.4
  • 32
    • 0037333037 scopus 로고    scopus 로고
    • Predicting the pressure coefficients in a naturally ventilated test room using artificial neural networks
    • KALOGIROU S., EFTEKHARI M., MARJANOVIC L., 2003 Predicting the pressure coefficients in a naturally ventilated test room using artificial neural networks. Build Environ 38, 399-407.
    • (2003) Build Environ , vol.38 , pp. 399-407
    • Kalogirou, S.1    Eftekhari, M.2    Marjanovic, L.3
  • 33
    • 0003544996 scopus 로고
    • Critical literature review of relationships between processing parameters and physical properties of particleboard
    • FPL 10, Forest Products Laboratory, Wis 53705, USA
    • KELLY M.W., 1977. Critical literature review of relationships between processing parameters and physical properties of particleboard. Madison: USDA Forest Service Research Paper, FPL 10, Forest Products Laboratory, Wis 53705, USA. 70 pp.
    • (1977) Madison: USDA Forest Service Research Paper , pp. 70
    • Kelly, M.W.1
  • 34
    • 0031189867 scopus 로고    scopus 로고
    • Using artificial neural networks to predict interior velocity coefficients
    • KRAUSS G., KINDANGEN J.I., DEPECKER P., 1997 Using artificial neural networks to predict interior velocity coefficients. Build Environ 4, 295-303.
    • (1997) Build Environ , vol.4 , pp. 295-303
    • Krauss, G.1    Kindangen, J.I.2    Depecker, P.3
  • 35
    • 0034921649 scopus 로고    scopus 로고
    • Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network
    • MALINOV S., SHA W., MCKEOWN J.J., 2001. Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network. Comput Mater Sci 21, 375-394.
    • (2001) Comput Mater Sci , vol.21 , pp. 375-394
    • Malinov, S.1    Sha, W.2    McKeown, J.J.3
  • 37
    • 0015960183 scopus 로고
    • Properties of particleboards at various humidity conditions
    • FPL 225, Forest Products Laboratory, Wis 53705, USA
    • MCNATT J.D., 1974. Properties of particleboards at various humidity conditions. Madison: USDA Forest Service Research Paper, FPL 225, Forest Products Laboratory, Wis 53705, USA. 25 pp.
    • (1974) Madison: USDA Forest Service Research Paper , pp. 25
    • McNatt, J.D.1
  • 38
    • 65249102744 scopus 로고    scopus 로고
    • Aplicación de redes neuronales a la clasificación visual de madera estructural. Comparación con otros métodos de clasificación
    • IV Congreso Forestal Español, 26-30 Zaragoza
    • MIER R., GARCÍA DE CECA J.L., DÍEZ M.R., FERNÁNDEZ-GOLFÍN J.I., HERMOSO E., 2005. Aplicación de redes neuronales a la clasificación visual de madera estructural. Comparación con otros métodos de clasificación. IV Congreso Forestal Español, 26-30 Zaragoza.
    • (2005)
    • Mier, R.1    García de Ceca, J.L.2    Díez, M.R.3    Fernández-Golfín, J.I.4    Hermoso, E.5
  • 39
    • 0035169271 scopus 로고    scopus 로고
    • Unification of fruit water sorption isotherm using artificial neural networks
    • MYHARA R.M., SABLANI S., 2001. Unification of fruit water sorption isotherm using artificial neural networks. Dry Technol 19(8), 1543-1554.
    • (2001) Dry Technol , vol.19 , Issue.8 , pp. 1543-1554
    • Myhara, R.M.1    Sablani, S.2
  • 41
    • 33751407208 scopus 로고    scopus 로고
    • Evaluation of some of the properties of particleboard as function of manufacturing parameters
    • NEMLI G., AYDIN I., ZEKOVIÇ E., 2007. Evaluation of some of the properties of particleboard as function of manufacturing parameters. Mater Des 28, 1169-1176.
    • (2007) Mater Des , vol.28 , pp. 1169-1176
    • Nemli, G.1    Aydin, I.2    Zekoviç, E.3
  • 42
    • 0036179434 scopus 로고    scopus 로고
    • Knot identification from CT images of young Pinus sylvestris sawlogs using artificial neural networks
    • NORDMARK U., 2002. Knot identification from CT images of young Pinus sylvestris sawlogs using artificial neural networks. Scand J Forest Res 17, 72-78.
    • (2002) Scand J Forest Res , vol.17 , pp. 72-78
    • Nordmark, U.1
  • 43
    • 0036476658 scopus 로고    scopus 로고
    • Desorption isotherm modeling of black tea using artificial neural networks
    • PANCHARIYA P.C., POPOVIC D., SHARMA A.L., 2002. Desorption isotherm modeling of black tea using artificial neural networks. Dry Technol 20(2), 351-362.
    • (2002) Dry Technol , vol.20 , Issue.2 , pp. 351-362
    • Panchariya, P.C.1    Popovic, D.2    Sharma, A.L.3
  • 44
    • 33845321891 scopus 로고    scopus 로고
    • Modeling of water sorption isotherm for corn starch
    • PENG G., CHEN X., WU W., JIANG X., 2007. Modeling of water sorption isotherm for corn starch. J Food Eng 80, 562-567.
    • (2007) J Food Eng , vol.80 , pp. 562-567
    • Peng, G.1    Chen, X.2    Wu, W.3    Jiang, X.4
  • 46
    • 61849098565 scopus 로고    scopus 로고
    • Clasificación de defectos en madera utilizando redes neuronales artificiales
    • RAMÍREZ G., CHACÓN M.I., 2005. Clasificación de defectos en madera utilizando redes neuronales artificiales. Computación y Sistemas 9(1), 17-27.
    • (2005) Computación y Sistemas , vol.9 , Issue.1 , pp. 17-27
    • Ramírez, G.1    Chacón, M.I.2
  • 47
    • 34247401338 scopus 로고    scopus 로고
    • Comment on the issues of statistical modeling with particular reference to the use of artificial neural networks
    • SHA W., 2007. Comment on the issues of statistical modelling with particular reference to the use of artificial neural networks. Appl Catal A-Gen 324, 87-89.
    • (2007) Appl Catal A-Gen , vol.324 , pp. 87-89
    • Sha, W.1
  • 48
    • 34249723766 scopus 로고    scopus 로고
    • The use of artificial neural networks in materials science based research
    • SHA W., EDWARDS K.L., 2007. The use of artificial neural networks in materials science based research. Mater Des 6, 1747-1752.
    • (2007) Mater Des , vol.6 , pp. 1747-1752
    • Sha, W.1    Edwards, K.L.2
  • 49
    • 33748902591 scopus 로고    scopus 로고
    • Prediction of thermal conductivity of rock through physico-mechanical properties
    • SINGH T.N., SHINA S., SINGH V.K., 2007. Prediction of thermal conductivity of rock through physico-mechanical properties. Build Environ 42, 146-155.
    • (2007) Build Environ , vol.42 , pp. 146-155
    • Singh, T.N.1    Shina, S.2    Singh, V.K.3
  • 50
    • 34247390731 scopus 로고    scopus 로고
    • Predictive performance of «highly complex » artificial neural networks
    • TOMPOS A., MARGITFALVI J.L., TFIRST E., HÉBERGER K., 2007. Predictive performance of «highly complex » artificial neural networks. Appl Catal A-Gen 324, 90-93.
    • (2007) Appl Catal A-Gen , vol.324 , pp. 90-93
    • Tompos, A.1    Margitfalvi, J.L.2    Tfirst, E.3    Héberger, K.4
  • 51
    • 0016343727 scopus 로고
    • How species and board densities affect properties of exotic hardwood particleboards
    • VITAL B.R., LEHMANN W.F., BOONE R.S., 1974. How species and board densities affect properties of exotic hardwood particleboards. Forest Prod J 24(12), 37-45.
    • (1974) Forest Prod J , vol.24 , Issue.12 , pp. 37-45
    • Vital, B.R.1    Lehmann, W.F.2    Boone, R.S.3
  • 52
    • 0037293133 scopus 로고    scopus 로고
    • Analysis of the effects of density profile on the bending properties of particleboard using finite element method (FEM)
    • WONG E.D., YANG P., ZHANG M., WANG Q., NAKAO T., LI K.F., KAWAI S., 2003. Analysis of the effects of density profile on the bending properties of particleboard using finite element method (FEM). Holz Als Roh-und Werkst 61, 66-72.
    • (2003) Holz Als Roh-und Werkst , vol.61 , pp. 66-72
    • Wong, E.D.1    Yang, P.2    Zhang, M.3    Wang, Q.4    Nakao, T.5    Li, K.F.6    Kawai, S.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.