-
1
-
-
84911743709
-
Rational and elliptic solutions of the Korteweg-de Vries equation and a realted many-body problem
-
Airault H, McKean H P and Moser J 1977 Rational and elliptic solutions of the Korteweg-de Vries equation and a realted many-body problem Commun. Pure Appl. Math. 30 95-148
-
(1977)
Commun. Pure Appl. Math.
, vol.30
, Issue.1
, pp. 95-148
-
-
Airault, H.1
McKean, H.P.2
Moser, J.3
-
2
-
-
84867925933
-
On decompositions of the KdV 2-soliton
-
Benes N, Kasman A and Young K 2006 On decompositions of the KdV 2-soliton J. Nonlinear Sci. 16 179-200
-
(2006)
J. Nonlinear Sci.
, vol.16
, Issue.2
, pp. 179-200
-
-
Benes, N.1
Kasman, A.2
Young, K.3
-
3
-
-
0023400898
-
EXAMPLE of BLOW-UP, for the COMPLEX KdV EQUATION and EXISTENCE beyond the BLOW-UP.
-
Birnir B 1987 An example of blow-up for the complex KdV equation and existence beyond the blow-up SIAM J. Appl. Math. 47 710-25 (Pubitemid 17633023)
-
(1987)
SIAM Journal on Applied Mathematics
, vol.47
, Issue.4
, pp. 710-725
-
-
Bjorn, B.1
-
5
-
-
25644444056
-
Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized Korteweg-de Vries equation
-
Bona J L, Grujic Z and Kalisch H 2005 Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized Korteweg-de Vries equation Ann. Inst. Henri Poincaré Anal. Non Linéaire 22 783-97
-
(2005)
Ann. Inst. Henri Poincaré Anal. Non Linéaire
, vol.22
, Issue.6
, pp. 783-797
-
-
Bona, J.L.1
Grujic, Z.2
Kalisch, H.3
-
6
-
-
0039838728
-
Blow-up of spatially periodic complex-valued solutions of nonlinear dispersive equations
-
Bona J L and Weissler F B 2001 Blow-up of spatially periodic complex-valued solutions of nonlinear dispersive equations Indiana Univ. Math. J. 50 759-82
-
(2001)
Indiana Univ. Math. J.
, vol.50
, Issue.2
, pp. 0-782
-
-
Bona, J.L.1
And Weissler, F.B.2
-
7
-
-
0039373449
-
Interacting sine-Gordon solitons and classical particles: A dynamic equivalence
-
Bowtell G and Stuart A E G 1977 Interacting sine-Gordon solitons and classical particles: a dynamic equivalence Phys. Rev. D 215 3580-91
-
(1977)
Phys. Rev.
, vol.15
, Issue.12
, pp. 3580-3591
-
-
Bowtell, G.1
And Stuart, A.E.G.2
-
8
-
-
36749113943
-
A particle representation of the Korteweg-de Vries solitons
-
Bowtell G and Stuart A E G 1983 A particle representation of the Korteweg-de Vries solitons J. Math. Phys. 24 969-81
-
(1983)
J. Math. Phys.
, vol.24
, Issue.4
, pp. 969-981
-
-
Bowtell, G.1
And Stuart, A.E.G.2
-
9
-
-
0026916013
-
On the dynamics of soliton interactions for the Korteweg-de Vries equation
-
DOI 10.1016/0960-0779(92)90024-H
-
Bryan A C and Stuart A E G 1992 On the dynamics of soliton interactions for the Korteweg-de Vries equation Chaos, Solitons Fractals 2 487-91 (Pubitemid 23605893)
-
(1992)
Chaos, Solitons and Fractals
, vol.2
, Issue.5
, pp. 487-491
-
-
Bryan, A.C.1
Stuart, A.E.G.2
-
10
-
-
4043170189
-
Pole dynamics for elliptic solutions of the Korteweg-de Vries equation
-
Deconinck B and Segur H 2000 Pole dynamics for elliptic solutions of the Korteweg-de Vries equation Math. Phys. Anal. Geom. 3 49-74
-
(2000)
Math. Phys. Anal. Geom.
, vol.3
, Issue.1
, pp. 49-74
-
-
Deconinck, B.1
And Segur, H.2
-
11
-
-
0012860508
-
Local well-posedness of the generalized Korteweg-de Vries equation in spaces of analytic functions
-
Grujic Z and Kalisch H 2002 Local well-posedness of the generalized Korteweg-de Vries equation in spaces of analytic functions Diff. Integral Eqns 15 1325-34
-
(2002)
Diff. Integral Eqns
, vol.15
, pp. 1325-1334
-
-
Grujic, Z.1
And Kalisch, H.2
-
12
-
-
0000776140
-
On the structure during the interaction of the two-soliton solution of the Kortweg-de Vries equation
-
Hodnett P F and Moloney T P 1989 On the structure during the interaction of the two-soliton solution of the Kortweg-de Vries equation SIAM J. Math. Anal. 49 1174-87
-
(1989)
SIAM J. Math. Anal.
, vol.49
, Issue.4
, pp. 1174-1187
-
-
Hodnett, P.F.1
And Moloney, T.P.2
-
14
-
-
0002587383
-
The Korteweg-de Vries equation and related evolution equations
-
Kruskal M D 1974 The Korteweg-de Vries equation and related evolution equations Nonlinear Wave Motion (Lectures in Applied Mathematics vol 15) ed A C Newell (Providence, RI: American Mathematical Society) pp 61-83
-
(1974)
Nonlinear Wave Motion
, pp. 61-83
-
-
Kruskal, M.D.1
-
15
-
-
84981754671
-
Integrals of nonlinear equations of evolution and solitary waves
-
Lax P D 1968 Integrals of nonlinear equations of evolution and solitary waves Commun. Pure Appl. Math. XXI 467-90
-
(1968)
Commun. Pure Appl. Math.
, vol.21
, Issue.5
, pp. 467-490
-
-
Lax, P.D.1
-
16
-
-
0023331217
-
ON the INTERACTION of NEARLY EQUAL SOLUTIONS in the KdV EQUATION.
-
LeVeque R J 1987 On the interaction of nearly equal solitons in the KdV equation SIAM J. Appl. Math. 47 254-62 (Pubitemid 17552469)
-
(1987)
SIAM Journal on Applied Mathematics
, vol.47
, Issue.2
, pp. 254-262
-
-
Leveque Randall, J.1
-
17
-
-
39049112934
-
-
Li Y C 2007 Simple explicit formulae for finite time blowup solutions to the complex KdV equation Chaos, Solitons and Fractals at press (doi:10.1016/j.chaos.2007.04.015)
-
(2007)
Chaos, Solitons and Fractals
-
-
Li, Y.C.1
-
18
-
-
0009228565
-
A system of particles equivalent to solitons
-
Thickstun W R 1976 A system of particles equivalent to solitons J. Math. Anal. Appl. 55 335-46
-
(1976)
J. Math. Anal. Appl.
, vol.55
, Issue.2
, pp. 335-346
-
-
Thickstun, W.R.1
-
21
-
-
33947602408
-
Local well-posedness and local (in space) regularity results for the complex Korteweg-de Vries equation
-
Wu J and Yuan J-M 2007 Local well-posedness and local (in space) regularity results for the complex Korteweg-de Vries equation Proc. R. Soc. Edinb. A 137 203-23
-
(2007)
Proc. R. Soc. Edinb.
, vol.137
, pp. 203-223
-
-
Wu, J.1
And Yuan, J.-M.2
-
22
-
-
33846361348
-
Interaction of 'solitons' in a collisionless plasma and the recurrence of intitial states
-
Zabusky N J and Kruskal M D 1965 Interaction of 'solitons' in a collisionless plasma and the recurrence of intitial states Phys. Rev. Lett. 15 240-3
-
(1965)
Phys. Rev. Lett.
, vol.15
, Issue.6
, pp. 240-243
-
-
Zabusky, N.J.1
And Kruskal, M.D.2
|