메뉴 건너뛰기




Volumn 5, Issue 2, 2005, Pages 489-512

The complex KDV equation with or without dissipation

Author keywords

Complex KdV equation; Complex KdV Burgers equation; Regularity

Indexed keywords


EID: 18144366962     PISSN: 15313492     EISSN: None     Source Type: Journal    
DOI: 10.3934/dcdsb.2005.5.489     Document Type: Article
Times cited : (15)

References (15)
  • 1
    • 34250136481 scopus 로고
    • Remarks on the breakdown of smooth solutions for the 3-D Euler equations
    • J. T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys., 94 (1984), 61-66.
    • (1984) Comm. Math. Phys. , vol.94 , pp. 61-66
    • Beale, J.T.1    Kato, T.2    Majda, A.3
  • 2
    • 0023400898 scopus 로고
    • An example of blow-up, for the complex KdV equation and existence beyond the blow-up
    • B. Birnir, An example of blow-up, for the complex KdV equation and existence beyond the blow-up, SIAM J. Appl. Math., 47 (1987), 710-725.
    • (1987) SIAM J. Appl. Math. , vol.47 , pp. 710-725
    • Birnir, B.1
  • 3
    • 0037980035 scopus 로고    scopus 로고
    • Solitary waves in nonlinear dispersive systems
    • J. L. Bona and H. Chen, Solitary waves in nonlinear dispersive systems, Discrete Contin. Dyn. Syst. Ser. B, 2 (2002), 313-378.
    • (2002) Discrete Contin. Dyn. Syst. Ser. B , vol.2 , pp. 313-378
    • Bona, J.L.1    Chen, H.2
  • 5
    • 0039838728 scopus 로고    scopus 로고
    • Blow up of spatially periodic complex-valued solutions of nonlinear dispersive equations
    • J. L. Bona and F. B. Weissler, Blow up of spatially periodic complex-valued solutions of nonlinear dispersive equations, Indiana Univ. Math. J., 50 (2001), 759-782.
    • (2001) Indiana Univ. Math. J. , vol.50 , pp. 759-782
    • Bona, J.L.1    Weissler, F.B.2
  • 7
    • 0009303159 scopus 로고
    • Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear equations, Part II; the KdV equation
    • J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear equations, Part II; the KdV equation, Geom. Func. Anal., 3 (1993), 209-262.
    • (1993) Geom. Func. Anal. , vol.3 , pp. 209-262
    • Bourgain, J.1
  • 8
    • 18144427301 scopus 로고
    • A simple model for unidirectional crystal growth
    • M. Kerszberg, A simple model for unidirectional crystal growth, Phys. Lett., A, 105 (1984), 241-244.
    • (1984) Phys. Lett., A , vol.105 , pp. 241-244
    • Kerszberg, M.1
  • 9
    • 0346961362 scopus 로고    scopus 로고
    • Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow
    • B. L. Keyfitz, R. Sanders and M. Sever, Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow, Discrete Contin. Dyn. Syst. Ser. B, 3 (2003), 541-563.
    • (2003) Discrete Contin. Dyn. Syst. Ser. B , vol.3 , pp. 541-563
    • Keyfitz, B.L.1    Sanders, R.2    Sever, M.3
  • 10
    • 0002587383 scopus 로고
    • The Korteweg-de Vries equation and related evolution equations, "nonlinear wave motion"
    • (ed. A.C. Newell) American Math. Soc.: Providence
    • M. D. Kruskal, The Korteweg-de Vries equation and Related Evolution Equations, "Nonlinear Wave Motion", Lectures in Applied Math, 15 (1974), 61-83 (ed. A.C. Newell) American Math. Soc.: Providence.
    • (1974) Lectures in Applied Math , vol.15 , pp. 61-83
    • Kruskal, M.D.1
  • 11
    • 33748058184 scopus 로고
    • Korteweg-de Vries equation and generalizations. V. uniqueness and nonexistence of polynomial conservation laws
    • M. D. Kruskal, R. M. Miura, C. S. Gardner and N. J. Zabusky, Korteweg-de Vries equation and generalizations. V. uniqueness and nonexistence of polynomial conservation laws, J. Math. Phys., 11 (1970), 952-960.
    • (1970) J. Math. Phys. , vol.11 , pp. 952-960
    • Kruskal, M.D.1    Miura, R.M.2    Gardner, C.S.3    Zabusky, N.J.4
  • 12
    • 18144417601 scopus 로고
    • Levi-civita theory for irrotational water waves in a one-dimensional channel and the complex Korteweg-de Vries equation
    • D. Levi, Levi-Civita theory for irrotational water waves in a one-dimensional channel and the complex Korteweg-de Vries equation, Teoret. Mat. Fiz., 99 (1994), 435-440;
    • (1994) Teoret. Mat. Fiz. , vol.99 , pp. 435-440
    • Levi, D.1
  • 13
    • 18144417601 scopus 로고
    • translation in Theoret. and Math. Phys., 99 (1994), 705-709.
    • (1994) Theoret. and Math. Phys. , vol.99 , pp. 705-709
  • 14
    • 18144380834 scopus 로고    scopus 로고
    • Irrotational water waves and the complex Korteweg-de Vries equation
    • D. Levi and M. Sanielevici, Irrotational water waves and the complex Korteweg-de Vries equation, Phys. D, 98 (1996), 510-514.
    • (1996) Phys. D , vol.98 , pp. 510-514
    • Levi, D.1    Sanielevici, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.