메뉴 건너뛰기




Volumn 29, Issue 2, 2009, Pages 421-443

Stochastic variational integrators

Author keywords

Ornstein Uhlenbeck process; Stochastic Hamiltonian systems; Variational integrators

Indexed keywords

HAMILTONIANS; LAGRANGE MULTIPLIERS; MECHANICS; VARIATIONAL TECHNIQUES;

EID: 65249113771     PISSN: 02724979     EISSN: 14643642     Source Type: Journal    
DOI: 10.1093/imanum/drn018     Document Type: Article
Times cited : (107)

References (41)
  • 5
    • 65249106027 scopus 로고    scopus 로고
    • Hamilton-Pontryagin integrators on lie groups part I: Introduction and structure-preserving properties
    • to appear
    • BOU-RABEE, N. & MARSDEN, J. E. (2008) Hamilton-Pontryagin integrators on lie groups part I: introduction and structure-preserving properties. Found. Comput. Math. (to appear).
    • (2008) Found. Comput. Math
    • BOU-RABEE, N.1    MARSDEN, J.E.2
  • 6
    • 65249099008 scopus 로고    scopus 로고
    • Symplectic-momentum Euler-Maruyama integrator for stochastic Hamiltonian systems with constraints
    • to appear
    • BOU-RABEE, N. & OWHADI, H. (2008) Symplectic-momentum Euler-Maruyama integrator for stochastic Hamiltonian systems with constraints. SIAM J. Numer. Anal. (to appear).
    • (2008) SIAM J. Numer. Anal
    • BOU-RABEE, N.1    OWHADI, H.2
  • 7
    • 38949150015 scopus 로고    scopus 로고
    • Projections of diffusions on submanifolds: Application to mean force computation
    • CICCOTTI, G., LELIEVRE, T. & VANDEN- EIJNDEN, E. (2008) Projections of diffusions on submanifolds: application to mean force computation. Commun. Pure Appl. Math., 61, 0001-0039.
    • (2008) Commun. Pure Appl. Math , vol.61 , pp. 0001-0039
    • CICCOTTI, G.1    LELIEVRE, T.2    VANDEN- EIJNDEN, E.3
  • 8
    • 65249094249 scopus 로고
    • Methods of integration which preserve the contact transformation property of the Hamiltonian equations
    • Technical Report, Notre Dama, Ind: Department of Mathematics, University of Notre Dame
    • DE VOGELAERE, R. (1956) Methods of integration which preserve the contact transformation property of the Hamiltonian equations. Technical Report, Notre Dama, Ind: Department of Mathematics, University of Notre Dame.
    • (1956)
    • DE VOGELAERE, R.1
  • 11
    • 0001299089 scopus 로고
    • Difference schemes for Hamiltonian formalism and symplectic geometry
    • FENG, K. (1986) Difference schemes for Hamiltonian formalism and symplectic geometry. J. Comput. Math., 4, 279-289.
    • (1986) J. Comput. Math , vol.4 , pp. 279-289
    • FENG, K.1
  • 16
    • 65249164854 scopus 로고    scopus 로고
    • Reduction and reconstruction of symmetric stochastic differential equations
    • in press
    • LAZARO-CAMI, J. A. & ORTEGA, J. P. (2007a) Reduction and reconstruction of symmetric stochastic differential equations. Rep. Math. Phys. (in press).
    • (2007) Rep. Math. Phys
    • LAZARO-CAMI, J.A.1    ORTEGA, J.P.2
  • 17
    • 65249178340 scopus 로고    scopus 로고
    • Stochastic Hamiltonian dynamical systems
    • in press
    • LAZARO-CAMI, J. A. & ORTEGA, J. P. (2007b) Stochastic Hamiltonian dynamical systems. Rep. Math. Phys. (in press).
    • (2007) Rep. Math. Phys
    • LAZARO-CAMI, J.A.1    ORTEGA, J.P.2
  • 19
    • 0031499015 scopus 로고    scopus 로고
    • Random motion of a rigid body
    • LIAO, M. (1997) Random motion of a rigid body. J. Theor. Probab., 10, 201-211.
    • (1997) J. Theor. Probab , vol.10 , pp. 201-211
    • LIAO, M.1
  • 20
    • 29144527560 scopus 로고    scopus 로고
    • Motion of a rigid body under random perturbation
    • LIAO, M. & WANG, L. (2005) Motion of a rigid body under random perturbation. Electron. Commun. Probab., 10, 235-243.
    • (2005) Electron. Commun. Probab , vol.10 , pp. 235-243
    • LIAO, M.1    WANG, L.2
  • 22
    • 55349143595 scopus 로고    scopus 로고
    • Stochastic Lie group integrators
    • MALHAM, S. J. A. & WIESE, A. (2007) Stochastic Lie group integrators. SIAM J. Sci. Comput., 30, 597-617.
    • (2007) SIAM J. Sci. Comput , vol.30 , pp. 597-617
    • MALHAM, S.J.A.1    WIESE, A.2
  • 23
    • 0001168352 scopus 로고
    • The reduced Euler-Lagrange equations
    • MARSDEN, J. E. & SCHEURLE, J. (1993) The reduced Euler-Lagrange equations. Fields Inst. Commun., 1, 139-164.
    • (1993) Fields Inst. Commun , vol.1 , pp. 139-164
    • MARSDEN, J.E.1    SCHEURLE, J.2
  • 24
    • 0033228880 scopus 로고    scopus 로고
    • Discrete Euler-Poincaré and Lie-Poisson equations
    • MARSDEN, J. E., PEKARSKY, S. & SHKOLLER, S. (1998) Discrete Euler-Poincaré and Lie-Poisson equations. Nonlinearity, 12, 1647-1662.
    • (1998) Nonlinearity , vol.12 , pp. 1647-1662
    • MARSDEN, J.E.1    PEKARSKY, S.2    SHKOLLER, S.3
  • 25
    • 65249109254 scopus 로고    scopus 로고
    • MARSDEN, J. & RATIU, T. (1999) Introduction to Mechanics and Symmetry. Springer Texts in Applied Mathematics. New York: Springer.
    • MARSDEN, J. & RATIU, T. (1999) Introduction to Mechanics and Symmetry. Springer Texts in Applied Mathematics. New York: Springer.
  • 26
    • 84959193128 scopus 로고    scopus 로고
    • Discrete mechanics and variational integrators
    • MARSDEN, J. E. & WEST, M. (2001) Discrete mechanics and variational integrators. Acta Numer., 10, 357-514.
    • (2001) Acta Numer , vol.10 , pp. 357-514
    • MARSDEN, J.E.1    WEST, M.2
  • 27
    • 65249148500 scopus 로고    scopus 로고
    • MILSTEIN, G. N., REPIN, YU. M. & TRETYAKOV, M. V. (2002) Symplectic methods for Hamiltonian systems with additive noise. SIAM J. Numer. Anal., 39, 1-9.
    • MILSTEIN, G. N., REPIN, YU. M. & TRETYAKOV, M. V. (2002) Symplectic methods for Hamiltonian systems with additive noise. SIAM J. Numer. Anal., 39, 1-9.
  • 28
    • 65249138867 scopus 로고    scopus 로고
    • MILSTEIN, G. N., REPIN, YU. M. & TRETYAKOV, M. V. (2003) Symplectic methods for stochastic systems preserving symplectic structure. SIAM J. Numer. Anal., 40, 1-9.
    • MILSTEIN, G. N., REPIN, YU. M. & TRETYAKOV, M. V. (2003) Symplectic methods for stochastic systems preserving symplectic structure. SIAM J. Numer. Anal., 40, 1-9.
  • 29
    • 0142138089 scopus 로고    scopus 로고
    • Quasi-symplectic methods for Langevin-type equations
    • MILSTEIN, G. N. & TRETYAKOV, M. V. (2003) Quasi-symplectic methods for Langevin-type equations. IMA J. Numer. Anal., 23, 593-626.
    • (2003) IMA J. Numer. Anal , vol.23 , pp. 593-626
    • MILSTEIN, G.N.1    TRETYAKOV, M.V.2
  • 31
    • 0000008977 scopus 로고
    • Discrete versions of some classical integrable systems and factorization of matrix polynomials
    • MOSER, J. & VESELOV, A. P. (1991) Discrete versions of some classical integrable systems and factorization of matrix polynomials. Commun. Math. Phys., 139, 217-243.
    • (1991) Commun. Math. Phys , vol.139 , pp. 217-243
    • MOSER, J.1    VESELOV, A.P.2
  • 32
    • 0004266655 scopus 로고
    • Princeton, NJ: Princeton University Press
    • NELSON, E. (1985) Quantum Fluctuations. Princeton, NJ: Princeton University Press.
    • (1985) Quantum Fluctuations
    • NELSON, E.1
  • 33
    • 0020798563 scopus 로고
    • A canonical integration technique
    • RUTH, R. D. (1983) A canonical integration technique. IEEE Trans. Nucl. Sci., 30, 2669-2671.
    • (1983) IEEE Trans. Nucl. Sci , vol.30 , pp. 2669-2671
    • RUTH, R.D.1
  • 34
    • 0003208202 scopus 로고
    • Simulation and numerical analysis of stochastic differential systems: A review
    • P. Krèe & W. Wedig eds, Berlin: Springer, pp
    • TALAY, D. (1995) Simulation and numerical analysis of stochastic differential systems: a review. Probabilistic Methods in Applied Physics (P. Krèe & W. Wedig eds), vol. 451. Berlin: Springer, pp. 54-96.
    • (1995) Probabilistic Methods in Applied Physics , vol.451 , pp. 54-96
    • TALAY, D.1
  • 35
    • 65249098321 scopus 로고    scopus 로고
    • Stochastic Hamiltonian systems: Exponential convergence to the invariant measure, and discretization by the implicit Euler scheme
    • TALAY, D. (2002) Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme. Markov Process. Relat. Fields, 8, 1-36.
    • (2002) Markov Process. Relat. Fields , vol.8 , pp. 1-36
    • TALAY, D.1
  • 36
    • 0037568790 scopus 로고    scopus 로고
    • Probability and quantum symmetries. I. The theorem of Noether in Schrödinger's Euclidean quantum mechanics
    • THIEULLEN, M. & ZAMBRINI, J. C. (2008) Probability and quantum symmetries. I. The theorem of Noether in Schrödinger's Euclidean quantum mechanics. Ann. Inst. H. Poincaré Phys. Théor., 67, 297-338.
    • (2008) Ann. Inst. H. Poincaré Phys. Théor , vol.67 , pp. 297-338
    • THIEULLEN, M.1    ZAMBRINI, J.C.2
  • 37
    • 33748419763 scopus 로고    scopus 로고
    • Second-order integrators for Langevin equations with holonomic constraints
    • VANDEN-EIJNDEN, E. & CICCOTTI, G. (2006) Second-order integrators for Langevin equations with holonomic constraints. Chem. Phys. Lett., 429, 310-316.
    • (2006) Chem. Phys. Lett , vol.429 , pp. 310-316
    • VANDEN-EIJNDEN, E.1    CICCOTTI, G.2
  • 38
    • 0002859047 scopus 로고
    • Integrable discrete-time systems and difference operators
    • VESELOV, M. (1988) Integrable discrete-time systems and difference operators. Funct. Anal. Appl., 22, 83-94.
    • (1988) Funct. Anal. Appl , vol.22 , pp. 83-94
    • VESELOV, M.1
  • 39
    • 0031210701 scopus 로고    scopus 로고
    • Mechanical integrators derived from a discrete variational principle
    • WENDLANDT, J. M. & MARSDEN, J. E. (1997) Mechanical integrators derived from a discrete variational principle. Physica D, 106, 223-246.
    • (1997) Physica D , vol.106 , pp. 223-246
    • WENDLANDT, J.M.1    MARSDEN, J.E.2
  • 40
    • 33749141694 scopus 로고    scopus 로고
    • Dirac structures and Lagrangian mechanics part I: Implicit Lagrangian systems
    • YOSHIMURA, H. & MARSDEN, J. E. (2006a) Dirac structures and Lagrangian mechanics part I: implicit Lagrangian systems. J. Geom. Phys., 57, 133-156.
    • (2006) J. Geom. Phys , vol.57 , pp. 133-156
    • YOSHIMURA, H.1    MARSDEN, J.E.2
  • 41
    • 33749126543 scopus 로고    scopus 로고
    • Dirac structures and Lagrangian mechanics part II: Variational structures
    • YOSHIMURA, H. & MARSDEN, J. E. (2006b) Dirac structures and Lagrangian mechanics part II: variational structures. J. Geom. Phys., 57, 209-250.
    • (2006) J. Geom. Phys , vol.57 , pp. 209-250
    • YOSHIMURA, H.1    MARSDEN, J.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.