메뉴 건너뛰기




Volumn 100, Issue 7, 2009, Pages 1367-1383

Inference for multivariate normal mixtures

Author keywords

Multivariate normal mixture; Penalized maximum likelihood estimator; Strong consistency

Indexed keywords


EID: 64249169715     PISSN: 0047259X     EISSN: 10957243     Source Type: Journal    
DOI: 10.1016/j.jmva.2008.12.005     Document Type: Article
Times cited : (61)

References (25)
  • 5
    • 0030157754 scopus 로고    scopus 로고
    • Mixture distributions in human genetics research
    • Schork N., Allison D., and Thiel B. Mixture distributions in human genetics research. Stat. Methods Med. Res. 5 (1996) 155-178
    • (1996) Stat. Methods Med. Res. , vol.5 , pp. 155-178
    • Schork, N.1    Allison, D.2    Thiel, B.3
  • 6
    • 20444465712 scopus 로고    scopus 로고
    • Bayesian variable selection in clustering high-dimensional data
    • Tadesse M., Sha N., and Vannucci M. Bayesian variable selection in clustering high-dimensional data. J. Amer. Statist. Assoc. 100 (2005) 602-617
    • (2005) J. Amer. Statist. Assoc. , vol.100 , pp. 602-617
    • Tadesse, M.1    Sha, N.2    Vannucci, M.3
  • 7
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via model-based cluster analysis
    • Fraley C., and Raftery A.E. How many clusters? Which clustering method? Answers via model-based cluster analysis. The Computer J. 41 (1998) 578-588
    • (1998) The Computer J. , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 8
    • 25444528487 scopus 로고    scopus 로고
    • On modelling locus heterogeneity using mixture distributions
    • Lin S., and Biswas S. On modelling locus heterogeneity using mixture distributions. BMC Genetics 5 (2004) 29
    • (2004) BMC Genetics , vol.5 , pp. 29
    • Lin, S.1    Biswas, S.2
  • 9
    • 33645505223 scopus 로고    scopus 로고
    • Variable selection for model-based clustering
    • Raftery A.E., and Dean N. Variable selection for model-based clustering. J. Amer. Statist. Assoc. 101 (2006) 168-178
    • (2006) J. Amer. Statist. Assoc. , vol.101 , pp. 168-178
    • Raftery, A.E.1    Dean, N.2
  • 10
    • 8844241460 scopus 로고    scopus 로고
    • Class discovery and classification of tumor samples using mixture modeling of gene expression data-A unified approach
    • Alexandridis R., Lin S., and Irwin M. Class discovery and classification of tumor samples using mixture modeling of gene expression data-A unified approach. Bioinformatics 20 (2004) 2545-2552
    • (2004) Bioinformatics , vol.20 , pp. 2545-2552
    • Alexandridis, R.1    Lin, S.2    Irwin, M.3
  • 11
    • 21144484047 scopus 로고
    • Multivariate normal mixtures: A fast consistent method of moments
    • Lindsay B.G., and Basak P. Multivariate normal mixtures: A fast consistent method of moments. J. Amer. Statist. Assoc. 86 (1993) 468-476
    • (1993) J. Amer. Statist. Assoc. , vol.86 , pp. 468-476
    • Lindsay, B.G.1    Basak, P.2
  • 12
    • 0001381164 scopus 로고
    • Estimating the components of a mixture of normal distributions
    • Day N.E. Estimating the components of a mixture of normal distributions. Biometrika 56 (1969) 463-474
    • (1969) Biometrika , vol.56 , pp. 463-474
    • Day, N.E.1
  • 13
    • 0001354471 scopus 로고
    • A constrained formulation of maximum-likelihood estimation for normal mixture distributions
    • Hathaway R.J. A constrained formulation of maximum-likelihood estimation for normal mixture distributions. Ann. Statist. 13 (1985) 795-800
    • (1985) Ann. Statist. , vol.13 , pp. 795-800
    • Hathaway, R.J.1
  • 14
    • 64249107955 scopus 로고    scopus 로고
    • Consistency of the constrained maximum likelihood estimator in finite normal mixture models
    • American Statistical Association, Alexandria, VA [CD-ROM]
    • Tan X., Chen J., and Zhang R. Consistency of the constrained maximum likelihood estimator in finite normal mixture models. 2007, Proceedings of the American Statistical Association (2007), American Statistical Association, Alexandria, VA 2113-2119 [CD-ROM]
    • (2007) 2007, Proceedings of the American Statistical Association , pp. 2113-2119
    • Tan, X.1    Chen, J.2    Zhang, R.3
  • 15
    • 34247898329 scopus 로고    scopus 로고
    • A likelihood-based constrained algorithm for multivariate normal mixture models
    • Ingrassia S. A likelihood-based constrained algorithm for multivariate normal mixture models. Stat. Methods Appl. 13 (2004) 151-166
    • (2004) Stat. Methods Appl. , vol.13 , pp. 151-166
    • Ingrassia, S.1
  • 16
    • 30344468432 scopus 로고    scopus 로고
    • The topography of multivariate normal mixtures
    • Ray S., and Lindsay B.G. The topography of multivariate normal mixtures. Ann. Statist. 33 (2005) 2042-2065
    • (2005) Ann. Statist. , vol.33 , pp. 2042-2065
    • Ray, S.1    Lindsay, B.G.2
  • 17
    • 0000357775 scopus 로고
    • On use of the EM algorithm for penalized likelihood estimation
    • Green P.J. On use of the EM algorithm for penalized likelihood estimation. J. Roy. Statist. Soc. Ser. B 52 (1990) 443-452
    • (1990) J. Roy. Statist. Soc. Ser. B , vol.52 , pp. 443-452
    • Green, P.J.1
  • 19
    • 47849122669 scopus 로고    scopus 로고
    • Inference for normal mixture in mean and variance
    • Chen J., Tan X., and Zhang R. Inference for normal mixture in mean and variance. Statist. Sinica 18 (2008) 443-465
    • (2008) Statist. Sinica , vol.18 , pp. 443-465
    • Chen, J.1    Tan, X.2    Zhang, R.3
  • 21
    • 0002210265 scopus 로고
    • On the convergence properties of the EM algorithm
    • Wu C.-F. On the convergence properties of the EM algorithm. Ann. Statist. 11 (1983) 95-103
    • (1983) Ann. Statist. , vol.11 , pp. 95-103
    • Wu, C.-F.1
  • 22
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the EM algorithm
    • Richard R.A., and Walker H.F. Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev. 26 (1984) 195-239
    • (1984) SIAM Rev. , vol.26 , pp. 195-239
    • Richard, R.A.1    Walker, H.F.2
  • 23
    • 0001486499 scopus 로고
    • Neyman J. (Ed), University of California Press, Berkeley, CA
    • James W., and Stein C. In: Neyman J. (Ed). Estimation with Quadratic Loss. Proc. Fourth Berkeley Symp. Math. Statist. Probab. vol. 1 (1961), University of California Press, Berkeley, CA 361-379
    • (1961) Proc. Fourth Berkeley Symp. Math. Statist. Probab. , vol.1 , pp. 361-379
    • James, W.1    Stein, C.2
  • 24
    • 0000167944 scopus 로고
    • Note on the consistency of the maximum likelihood estimate
    • Wald A. Note on the consistency of the maximum likelihood estimate. Ann. Math. Statist. 20 (1949) 595-601
    • (1949) Ann. Math. Statist. , vol.20 , pp. 595-601
    • Wald, A.1
  • 25
    • 0000284439 scopus 로고
    • Consistency on the maximum likelihood estimator in the presence of infinitely many incidental parameters
    • Kiefer J., and Wolfowitz J. Consistency on the maximum likelihood estimator in the presence of infinitely many incidental parameters. Ann. Math. Statist. 27 (1956) 887-906
    • (1956) Ann. Math. Statist. , vol.27 , pp. 887-906
    • Kiefer, J.1    Wolfowitz, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.