메뉴 건너뛰기




Volumn 6, Issue 2, 2009, Pages 367-372

Internal model control based on a neurofuzzy system for network applications. a case study on the high-performance drilling process

Author keywords

High performance drilling; Internal model control; Networked control; Neurofuzzy systems

Indexed keywords

ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEMS; COMMUNICATION NETWORKS; CUTTING FORCES; DRILLING PROCESS; EXPERIMENTAL DATUM; FEED RATES; HIGH-PERFORMANCE DRILLING; INPUT/OUTPUT; INPUT/OUTPUT DATUM; INTERNAL MODEL CONTROL; INVERSE DYNAMICS; INVERSE MODELS; MODELING AND CONTROLS; NETWORK APPLICATIONS; NETWORK-BASED; NETWORKED APPLICATIONS; NETWORKED CONTROL; NEURO-FUZZY MODELS; NEUROFUZZY SYSTEMS; P-I-D CONTROLS; PROCESS UNCERTAINTIES; REAL-TIME APPLICATIONS;

EID: 64049100191     PISSN: 15455955     EISSN: None     Source Type: Journal    
DOI: 10.1109/TASE.2008.2006686     Document Type: Article
Times cited : (16)

References (15)
  • 1
    • 34147095911 scopus 로고    scopus 로고
    • Kinematic analysis of dimensional variation propagation for multistage machining processes with general fixture layouts
    • Apr
    • J. P. Loose, S. Y. Zhou, and D. Ceglarek, "Kinematic analysis of dimensional variation propagation for multistage machining processes with general fixture layouts," IEEE Trans. Autom. Sci. Eng., vol. 4, pp. 141-152, Apr. 2007.
    • (2007) IEEE Trans. Autom. Sci. Eng , vol.4 , pp. 141-152
    • Loose, J.P.1    Zhou, S.Y.2    Ceglarek, D.3
  • 2
    • 33845961260 scopus 로고    scopus 로고
    • Intelligent modeling of thrust force in drilling process
    • Dec
    • Y. Sheng and M. Tomizuka, "Intelligent modeling of thrust force in drilling process," J. Dynamic Syst. Measure. Control-Trans. ASME, vol. 128, pp. 846-855, Dec. 2006.
    • (2006) J. Dynamic Syst. Measure. Control-Trans. ASME , vol.128 , pp. 846-855
    • Sheng, Y.1    Tomizuka, M.2
  • 3
    • 0141501530 scopus 로고    scopus 로고
    • Neuro-fuzzy methods for nonlinear system identification
    • R. Babuska and H. Verbruggen, "Neuro-fuzzy methods for nonlinear system identification," Annu. Rev. Control, vol. 27 I, pp. 73-85, 2003.
    • (2003) Annu. Rev. Control , vol.27 , Issue.I , pp. 73-85
    • Babuska, R.1    Verbruggen, H.2
  • 4
    • 34047254534 scopus 로고    scopus 로고
    • Modeling and control of nonlinear systems using soft computing techniques
    • M. A. Denai, F. Palis, and A. Zeghbib, "Modeling and control of nonlinear systems using soft computing techniques," Appl. Soft Comput. J., vol. 7, pp. 728-738, 2007.
    • (2007) Appl. Soft Comput. J , vol.7 , pp. 728-738
    • Denai, M.A.1    Palis, F.2    Zeghbib, A.3
  • 5
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • J.-S. R. Jang, "ANFIS: Adaptive-network-based fuzzy inference system," IEEE Trans. Syst. Man Cybern., vol. 23, pp. 665-685, 1993.
    • (1993) IEEE Trans. Syst. Man Cybern , vol.23 , pp. 665-685
    • Jang, J.-S.R.1
  • 6
    • 33751249040 scopus 로고    scopus 로고
    • TWNFI-A transductive neuro-fuzzy inference system with weighted data normalization for personalized modeling
    • Q. Song and N. Kasabov, "TWNFI-A transductive neuro-fuzzy inference system with weighted data normalization for personalized modeling," Neural Networks, vol. 19, pp. 1591-1596, 2006.
    • (2006) Neural Networks , vol.19 , pp. 1591-1596
    • Song, Q.1    Kasabov, N.2
  • 9
    • 27544433548 scopus 로고    scopus 로고
    • Controlling a complex electromechanical process on the basis of a neurofuzzy approach
    • R. E. Haber, J. R. Alique, A. Alique, and R. H. Haber, "Controlling a complex electromechanical process on the basis of a neurofuzzy approach," Future Generation Comput. Syst., vol. 21, pp. 1083-1095, 2005.
    • (2005) Future Generation Comput. Syst , vol.21 , pp. 1083-1095
    • Haber, R.E.1    Alique, J.R.2    Alique, A.3    Haber, R.H.4
  • 10
    • 35348926200 scopus 로고    scopus 로고
    • A classic solution for the control of a high-performance drilling process
    • R. Haber-Haber, R. Haber, M. Schmittdiel, and R. M. del Toro, "A classic solution for the control of a high-performance drilling process," Int. J. Mach. Tools Manuf., vol. 47, pp. 2290-2297, 2007.
    • (2007) Int. J. Mach. Tools Manuf , vol.47 , pp. 2290-2297
    • Haber-Haber, R.1    Haber, R.2    Schmittdiel, M.3    del Toro, R.M.4
  • 12
    • 64049104860 scopus 로고    scopus 로고
    • SIEMENS, SINUMERIK 840D/810D/FM-NC User Manual: Siemens. 2000.
    • SIEMENS, SINUMERIK 840D/810D/FM-NC User Manual: Siemens. 2000.
  • 13
    • 38149008325 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system modeling of MRR and WIWNU in CMP process with sparse experimental data
    • Jan
    • W. C. Lih, S. T. S. Bukkapatnam, P. Rao, N. Chandrasekharan, and R. Komanduri, "Adaptive neuro-fuzzy inference system modeling of MRR and WIWNU in CMP process with sparse experimental data," IEEE Trans. Autom. Sci. Eng., vol. 5, pp. 71-82, Jan. 2008.
    • (2008) IEEE Trans. Autom. Sci. Eng , vol.5 , pp. 71-82
    • Lih, W.C.1    Bukkapatnam, S.T.S.2    Rao, P.3    Chandrasekharan, N.4    Komanduri, R.5
  • 14
    • 64049116113 scopus 로고    scopus 로고
    • K. J. Äström and T. Hagglund, PID Controllers: Theory, Design, and Tuning, 2nd ed. Research Triangle Park, NC: Instrum. Soc. America, 1995.
    • K. J. Äström and T. Hagglund, PID Controllers: Theory, Design, and Tuning, 2nd ed. Research Triangle Park, NC: Instrum. Soc. America, 1995.
  • 15
    • 0043026846 scopus 로고    scopus 로고
    • Remote fuzzy logic control of networked control system via profibus-DP
    • Aug
    • K. C. Lee, S. Lee, and M. H. Lee, "Remote fuzzy logic control of networked control system via profibus-DP," IEEE Trans. Ind. Electron., vol. 50, pp. 784-792, Aug. 2003.
    • (2003) IEEE Trans. Ind. Electron , vol.50 , pp. 784-792
    • Lee, K.C.1    Lee, S.2    Lee, M.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.