메뉴 건너뛰기




Volumn , Issue , 2009, Pages

Features selection for intrusion detection systems based on support vector machines

Author keywords

Features ranking; Features selection; Intrusion detection systems; Support vector decision function; Support vector machines

Indexed keywords

BACKWARD ELIMINATIONS; CLASSIFICATION ACCURACIES; COMPUTATIONAL RESOURCES; DARPA DATASET; DETECTION ACCURACIES; FEATURES RANKING; FEATURES SELECTION; FORWARD SELECTIONS; INTRUSION DETECTION SYSTEMS; LARGE AMOUNTS OF DATUM; REDUNDANT FEATURES; SIMPLE METHODS; SUPPORT VECTOR DECISION FUNCTION; SYSTEM ACCURACIES; TESTING TIME; TRAINING AND TESTING; TRAINING TIME;

EID: 63749126820     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CCNC.2009.4784780     Document Type: Conference Paper
Times cited : (61)

References (40)
  • 1
    • 45149097329 scopus 로고    scopus 로고
    • International Conference on Wavelet Analysis and Pattern Recognition 2007(ICWAPR'07)
    • Pagess, Nov
    • Y. LI, and Z. WANG. An Intrusion Detection Method Based on SVM and LPCA. International Conference on Wavelet Analysis and Pattern Recognition 2007(ICWAPR'07), Pages(s): 1462-1466, 2-4 Nov. 2007.
    • (2007) , vol.1462-1466 , Issue.2-4
    • LI, Y.1    WANG, Z.2
  • 7
    • 77951492756 scopus 로고    scopus 로고
    • Feature Selection for Intrusion Detection using Neural Networks and Support Vector Machines. Technical Report
    • Unpublished paper
    • S. Mukkamalal and A. Sung. Feature Selection for Intrusion Detection using Neural Networks and Support Vector Machines. Technical Report, Unpublished paper.
    • Mukkamalal, S.1    Sung, A.2
  • 8
    • 84943383590 scopus 로고    scopus 로고
    • Identifying Important Features for Intrusion Detection Using Support Vector Machines and Neural Networks
    • Pages, 27-31 Jan
    • Andrew H. Sung, Srinivas Mukkamala. Identifying Important Features for Intrusion Detection Using Support Vector Machines and Neural Networks. Symposium on Application and Internet (SAINT'03), Page(s): 209- 216, 27-31 Jan. 2003.
    • (2003) Symposium on Application and Internet (SAINT'03) , pp. 209-216
    • Sung, A.H.1    Mukkamala, S.2
  • 9
    • 33745122959 scopus 로고    scopus 로고
    • The Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies, 2005, (PDCAT'05
    • Pages, 05-08 Dec
    • Khaja Mohammad Shazzad, Jong Sou Park. Optimization of Intrusion Detection through Fast Hybrid Feature Selection. The Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies, 2005, (PDCAT'05), Page(s): 264 - 267, 05-08 Dec, 2005.
    • (2005) , vol.264 , pp. 267
    • Mohammad Shazzad, K.1    Sou Park, J.2
  • 10
    • 15744380176 scopus 로고    scopus 로고
    • A Framework for Countering Denial of Service Attacks
    • Man and Cybernetics, Pages, 10-13 Oct
    • S. Mukkamala and A. Sung. A Framework for Countering Denial of Service Attacks. 2004 IEEE International Conference on Systems, Man and Cybernetics, Page(s): 3273 - 3278, 10-13 Oct. 2004.
    • (2004) 2004 IEEE International Conference on Systems , pp. 3273-3278
    • Mukkamala, S.1    Sung, A.2
  • 11
    • 10944257572 scopus 로고    scopus 로고
    • Feature Selection for Intrusion Detection: An Evolutionary Wrapper Approach. 2004
    • Pages, 25-29 July
    • A. Hofmann,T. Horeis, and B. Sick. Feature Selection for Intrusion Detection: An Evolutionary Wrapper Approach. 2004 IEEE International Joint Conference on Neural Networks, Page(s): 1563- 1568, 25-29 July 2004.
    • (2004) IEEE International Joint Conference on Neural Networks , pp. 1563-1568
    • Hofmann, A.1    Horeis, T.2    Sick, B.3
  • 14
    • 84870480277 scopus 로고    scopus 로고
    • Weighted Feature Extraction using a Genetic Algorithm for Intrusion Detection
    • Pages, 8-12 Dec
    • M. Middlemiss and G. Dick. Weighted Feature Extraction using a Genetic Algorithm for Intrusion Detection. The 2003 Congress on Evolutionary Computation (CEC'03), Page(s): 1669- 1675, 8-12 Dec. 2003.
    • (2003) The 2003 Congress on Evolutionary Computation (CEC'03) , pp. 1669-1675
    • Middlemiss, M.1    Dick, G.2
  • 16
    • 63749120226 scopus 로고    scopus 로고
    • Network Intrusion Detection Design Using Feature Selection of Soft Computing Paradigms
    • Pages, October 31
    • T. Chou, K. Yen, and J. Luo. Network Intrusion Detection Design Using Feature Selection of Soft Computing Paradigms. International Journal of Computational Intelligence, Page(s): 196-208, October 31, 2007.
    • (2007) International Journal of Computational Intelligence , pp. 196-208
    • Chou, T.1    Yen, K.2    Luo, J.3
  • 18
    • 0036161259 scopus 로고    scopus 로고
    • I. Guyon, J. Weston, S. Barnhill, M.D. and V. Vapnik. Gene Selection for Cancer Classification using Support Vector Machines, Journal, Springer Netherlands, Page(s): 389-422, October 31, 2004.
    • I. Guyon, J. Weston, S. Barnhill, M.D. and V. Vapnik. Gene Selection for Cancer Classification using Support Vector Machines, Journal, Springer Netherlands, Page(s): 389-422, October 31, 2004.
  • 19
    • 84869266772 scopus 로고    scopus 로고
    • http://www.ll.mit.edu/mission/communications/ist/index.html
  • 20
    • 84942785917 scopus 로고    scopus 로고
    • M. Dash, H. Liu, and H. Motoda. Consistency Based Feature Selection. Lecture Notes In Computer Science, 4th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Pages: 98 - 109, 2000.
    • M. Dash, H. Liu, and H. Motoda. Consistency Based Feature Selection. Lecture Notes In Computer Science, 4th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Pages: 98 - 109, 2000.
  • 22
    • 0141593896 scopus 로고    scopus 로고
    • Evolutionary Optimization of Radial Basis Function Networks for Intrusion Detection
    • Pages, 20-24 July
    • A. Hofmann and B. Sick. Evolutionary Optimization of Radial Basis Function Networks for Intrusion Detection. The international Joint Conference on Neural Networks, Page(s): 415- 420, 20-24 July 2003.
    • (2003) The international Joint Conference on Neural Networks , pp. 415-420
    • Hofmann, A.1    Sick, B.2
  • 25
    • 84958740656 scopus 로고    scopus 로고
    • M. Fugate and J. Gattiker. Anomaly Detection Enhanced Classification in Computer Intrusion Detection. Lecture Notes In Computer Science, The First International Workshop on Pattern Recognition with Support Vector Machines, Page(s): 186 - 197, 2002.
    • M. Fugate and J. Gattiker. Anomaly Detection Enhanced Classification in Computer Intrusion Detection. Lecture Notes In Computer Science, The First International Workshop on Pattern Recognition with Support Vector Machines, Page(s): 186 - 197, 2002.
  • 26
    • 0036085392 scopus 로고
    • The 2002 International Joint Conference on Neural Network
    • PageS, 2002
    • S. Mukkamala, G. Janoski, and A. Sung. Intrusion Detection using Neural Networks and Support Vector Machines. The 2002 International Joint Conference on Neural Network, Page(S): 1702-1707, 2002.
    • (1702)
    • Mukkamala, S.1    Janoski, G.2    Sung, A.3
  • 27
    • 63749128933 scopus 로고    scopus 로고
    • Statistical Learning Theory and Support Vector Machines
    • A. Smola. Statistical Learning Theory and Support Vector Machines. Technical Report, IEEE 2001.
    • (2001) Technical Report, IEEE
    • Smola, A.1
  • 28
    • 63749115703 scopus 로고    scopus 로고
    • P. Tillapart, Th. Thumthawatworn and P. Santiprabhob. Fuzzy Intrusion Detection System. AU J.T. 6(2): 109-114, Oct. 2002.
    • P. Tillapart, Th. Thumthawatworn and P. Santiprabhob. Fuzzy Intrusion Detection System. AU J.T. 6(2): 109-114, Oct. 2002.
  • 32
    • 33847288076 scopus 로고    scopus 로고
    • Using Genetic Algorithm for Network Intrusion Detection
    • Department of Computer Science and Engineering, Mississippi State University
    • W. Li. Using Genetic Algorithm for Network Intrusion Detection. Unpublished technical report. Department of Computer Science and Engineering, Mississippi State University. http://www.security.cse.msstate.edu/docs/ Publications/wli/DOECSG200 4.pdf.
    • Unpublished technical report
    • Li, W.1
  • 33
    • 6344260530 scopus 로고    scopus 로고
    • The Research and Implementation of Intelligent Intrusion Detection System Based on Artificial Neural Network
    • Shanghai, Pages, Aug
    • J. Li, G. Zhang, and G. Gu. The Research and Implementation of Intelligent Intrusion Detection System Based on Artificial Neural Network. IEEE Proceedings of the Third International Conference on Machine Laming and Cybernetics, Shanghai, Page(s):3178 - 3182 Vol.5, Aug. 2004.
    • (2004) IEEE Proceedings of the Third International Conference on Machine Laming and Cybernetics , vol.5 , pp. 3178-3182
    • Li, J.1    Zhang, G.2    Gu, G.3
  • 34
    • 15944375471 scopus 로고    scopus 로고
    • Intrusion detection using hierarchical neural networks
    • Pages, 16 February
    • C. Zhang, J. Jiang, and M. Kamel. Intrusion detection using hierarchical neural networks. Pattern Recognition Letters 26, Page(s): 779-791, 16 February 2004.
    • (2004) Pattern Recognition Letters , vol.26 , pp. 779-791
    • Zhang, C.1    Jiang, J.2    Kamel, M.3
  • 36
    • 0242408742 scopus 로고    scopus 로고
    • Artificial Intelligent Techniques for Intrusion Detection.
    • Man, and Cybernetics, Pages
    • S. Mukkamala and A. Sung. Artificial Intelligent Techniques for Intrusion Detection. . IEEE International Conference Systems, Man, and Cybernetics, 2003, Page(s): 1266-1271, 2003.
    • (2003) IEEE International Conference Systems , pp. 1266-1271
    • Mukkamala, S.1    Sung, A.2
  • 37
    • 11144275989 scopus 로고    scopus 로고
    • Support Vector Classifiers and Network Intrusion Detection
    • Pages, 25-29 July
    • J. Mill and A. Tnoue. Support Vector Classifiers and Network Intrusion Detection. 2004 IEEE International Conference on Fuzzy Systems, Page(s): 407- 410, 25-29 July 2004.
    • (2004) 2004 IEEE International Conference on Fuzzy Systems , pp. 407-410
    • Mill, J.1    Tnoue, A.2
  • 39
    • 0037860750 scopus 로고    scopus 로고
    • Detecting Denial of Service Attacks Using Support Vector MachinesS
    • Pages, 25-28 May
    • Mukkamala, and A.Sung. Detecting Denial of Service Attacks Using Support Vector MachinesS. The 12th IEEE International Conference on Fuzzy Systems, 2003, Page(s): 1231 - 1236, 25-28 May 2003.
    • (2003) The 12th IEEE International Conference on Fuzzy Systems , pp. 1231-1236
    • Mukkamala1    Sung, A.2
  • 40
    • 63749099444 scopus 로고    scopus 로고
    • N. Cristianini. Support Vector and Kernel Machines. BIOwulf Technologies, Tutorial, UCML-2001.
    • N. Cristianini. Support Vector and Kernel Machines. BIOwulf Technologies, Tutorial, UCML-2001.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.