메뉴 건너뛰기




Volumn 2005, Issue , 2005, Pages 264-266

Optimization of intrusion detection through fast hybrid feature selection

Author keywords

[No Author keywords available]

Indexed keywords

FEATURE SELECTION METHODS; INTRUSION DETECTIONS; SUPPORT VECTOR MACHINES;

EID: 33745122959     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/PDCAT.2005.181     Document Type: Conference Paper
Times cited : (16)

References (8)
  • 1
    • 0141723181 scopus 로고    scopus 로고
    • KDD Cup 1999 Data, "http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html"
    • KDD Cup 1999 Data
  • 2
    • 85065703189 scopus 로고    scopus 로고
    • Correlation-based feature selection for discrete and numeric class machine learning
    • M.A. Hall, "Correlation-Based Feature Selection for Discrete and Numeric Class Machine Learning", Proc. 17th Int'l Conf Machine Learning, 2000, pp. 359-366.
    • (2000) Proc. 17th Int'l Conf Machine Learning , pp. 359-366
    • Hall, M.A.1
  • 4
    • 0028496468 scopus 로고
    • Learning boolean concepts in the presence of many irrelevant features
    • H. Almuallim and T.G. Dietterich" "Learning Boolean Concepts in the Presence of Many Irrelevant Features", Artificial Intelligence, vol. 69, nos. 1-2, 1994, pp. 279-305.
    • (1994) Artificial Intelligence , vol.69 , Issue.1-2 , pp. 279-305
    • Almuallim, H.1    Dietterich, T.G.2
  • 6
    • 24944485860 scopus 로고    scopus 로고
    • Fusions of GA and SVM for anomaly detection in intrusion detection system
    • Dong Seong Kim, Ha-Nam Nguyen, Syng-Yup Ohn, Jong Sou Park, "Fusions of GA and SVM for Anomaly Detection in Intrusion Detection System", ISNN (3) 2005, pp. 415-420.
    • ISNN (3) 2005 , pp. 415-420
    • Kim, D.S.1    Nguyen, H.-N.2    Ohn, S.-Y.3    Park, J.S.4
  • 7
    • 84943383590 scopus 로고    scopus 로고
    • Identifying important features for intrusion detection using support vector machines and neural networks
    • IEEE Computer Society Press
    • A. H. Sung, S. Mukkamala, "Identifying Important Features for Intrusion Detection Using Support Vector Machines and Neural Networks" Proc. of the International Symposium on Applications and the Internet Technology, IEEE Computer Society Press, 2003, pp. 209-216.
    • (2003) Proc. of the International Symposium on Applications and the Internet Technology , pp. 209-216
    • Sung, A.H.1    Mukkamala, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.