-
1
-
-
36849096526
-
-
See the references cited in, 0021-9606 10.1063/1.1841150.
-
See the references cited in E. Rapoport, J. Chem. Phys. 0021-9606 10.1063/1.1841150 46, 2891 (1967).
-
(1967)
J. Chem. Phys.
, vol.46
, pp. 2891
-
-
Rapoport, E.1
-
2
-
-
43149088431
-
-
0953-8984
-
P. F. McMillan, M. Wilson, M. C. Wilding, D. Daisenberger, M. Mezouar, and G. N. Greaves, J. Phys.: Condens. Matter 19, 415101 (2007). 0953-8984
-
(2007)
J. Phys.: Condens. Matter
, vol.19
, pp. 415101
-
-
McMillan, P.F.1
Wilson, M.2
Wilding, M.C.3
Daisenberger, D.4
Mezouar, M.5
Greaves, G.N.6
-
3
-
-
0000393814
-
-
0031-9007 10.1103/PhysRevLett.79.2474.
-
M. Togaya, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.79.2474 79, 2474 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 2474
-
-
Togaya, M.1
-
4
-
-
4243994760
-
-
0031-9007 10.1103/PhysRevLett.82.4659.
-
J. N. Glosli and F. H. Ree, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.82.4659 82, 4659 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 4659
-
-
Glosli, J.N.1
Ree, F.H.2
-
5
-
-
0037163804
-
-
0031-9007 10.1103/PhysRevLett.89.135701.
-
C. J. Wu, J. N. Glosi, G. Galli, and F. H. Ree, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.89.135701 89, 135701 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 135701
-
-
Wu, C.J.1
Glosi, J.N.2
Galli, G.3
Ree, F.H.4
-
6
-
-
28844445080
-
-
0031-9007 10.1103/PhysRevLett.95.185701.
-
X. Wang, S. Scandolo, and R. Car, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.95.185701 95, 185701 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 185701
-
-
Wang, X.1
Scandolo, S.2
Car, R.3
-
7
-
-
0034642491
-
-
0028-0836 10.1038/35003143.
-
Y. Katayama, T. Mizutani, W. Utsumi, O. Shimomura, M. Yamakata, and K. Funakoshi, Nature (London) 0028-0836 10.1038/35003143 403, 170 (2000).
-
(2000)
Nature (London)
, vol.403
, pp. 170
-
-
Katayama, Y.1
Mizutani, T.2
Utsumi, W.3
Shimomura, O.4
Yamakata, M.5
Funakoshi, K.6
-
10
-
-
7444237150
-
-
0036-8075 10.1126/science.1103073.
-
R. Kurita and H. Tanaka, Science 0036-8075 10.1126/science.1103073 306, 845 (2004).
-
(2004)
Science
, vol.306
, pp. 845
-
-
Kurita, R.1
Tanaka, H.2
-
11
-
-
54949151884
-
-
0036-8075 10.1126/science.1160766.
-
G. N. Greaves, M. C. Wilding, S. Fearn, D. Langstaff, F. Kargl, S. Cox, Q. Vu Van, O. Maj́rus, C. J. Benmore, R. Weber, C. M. Martin, and L. Hennet, Science 0036-8075 10.1126/science.1160766 322, 566 (2008).
-
(2008)
Science
, vol.322
, pp. 566
-
-
Greaves, G.N.1
Wilding, M.C.2
Fearn, S.3
Langstaff, D.4
Kargl, F.5
Cox, S.6
Van V., Q.7
Maj́rus, O.8
Benmore, C.J.9
Weber, R.10
Martin, C.M.11
Hennet, L.12
-
12
-
-
0000790865
-
-
0022-3719 10.1088/0022-3719/18/4/010.
-
Y. Fujii, M. Kowaka, and A. Onodera, J. Phys. C 0022-3719 10.1088/0022-3719/18/4/010 18, 789 (1985).
-
(1985)
J. Phys. C
, vol.18
, pp. 789
-
-
Fujii, Y.1
Kowaka, M.2
Onodera, A.3
-
13
-
-
4243725610
-
-
0031-9007 10.1103/PhysRevLett.79.4597.
-
N. Hamaya, K. Sato, K. Usui-Watanabe, K. Fuchizaki, Y. Fujii, and Y. Ohishi, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.79.4597 79, 4597 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 4597
-
-
Hamaya, N.1
Sato, K.2
Usui-Watanabe, K.3
Fuchizaki, K.4
Fujii, Y.5
Ohishi, Y.6
-
14
-
-
63649140236
-
-
The amorphous state found previously happened to be the high-pressure state, so we named this state Am-I.
-
The amorphous state found previously happened to be the high-pressure state, so we named this state Am-I.
-
-
-
-
16
-
-
3042543262
-
-
0021-9606 10.1063/1.1751397.
-
K. Fuchizaki, Y. Fujii, Y. Ohishi, A. Ohmura, N. Hamaya, Y. Katayama, and T. Okada, J. Chem. Phys. 0021-9606 10.1063/1.1751397 120, 11196 (2004).
-
(2004)
J. Chem. Phys.
, vol.120
, pp. 11196
-
-
Fuchizaki, K.1
Fujii, Y.2
Ohishi, Y.3
Ohmura, A.4
Hamaya, N.5
Katayama, Y.6
Okada, T.7
-
18
-
-
4544376934
-
-
The flatness of the melting curve cannot be explained, even by incorporating the effect of multipolar interactions to the intermolecular interaction. We concluded that the rigidity of molecules can no longer be assumed adequate for describing the system under pressures beyond 1 GPa. See,. 0038-1098
-
The flatness of the melting curve cannot be explained, even by incorporating the effect of multipolar interactions to the intermolecular interaction. We concluded that the rigidity of molecules can no longer be assumed adequate for describing the system under pressures beyond 1 GPa. See K. Fuchizaki and K. Nagai, Solid State Commun. 132, 305 (2004). 0038-1098
-
(2004)
Solid State Commun.
, vol.132
, pp. 305
-
-
Fuchizaki, K.1
Nagai, K.2
-
19
-
-
0000103371
-
-
0034-6748 10.1063/1.1140736.
-
K. Tsuji, K. Yaoita, M. Imai, O. Shimomura, and T. Kikegawa, Rev. Sci. Instrum. 0034-6748 10.1063/1.1140736 60, 2425 (1989).
-
(1989)
Rev. Sci. Instrum.
, vol.60
, pp. 2425
-
-
Tsuji, K.1
Yaoita, K.2
Imai, M.3
Shimomura, O.4
Kikegawa, T.5
-
20
-
-
34547865782
-
-
0021-9606 10.1063/1.2754265.
-
K. Fuchizaki, S. Kohara, Y. Ohishi, and N. Hamaya, J. Chem. Phys. 0021-9606 10.1063/1.2754265 127, 064504 (2007).
-
(2007)
J. Chem. Phys.
, vol.127
, pp. 064504
-
-
Fuchizaki, K.1
Kohara, S.2
Ohishi, Y.3
Hamaya, N.4
-
21
-
-
63649156192
-
-
This is explicitly expressed by Sintra (k) =1+ 8 5 j0 (k rSn-I) + 12 5 j0 (8 3 k rSn-I), where rSn-I is an intramolecular distance between Sn and I, and j0 denotes the zeroth-order spherical Bessel function.
-
This is explicitly expressed by Sintra (k) =1+ 8 5 j0 (k rSn-I) + 12 5 j0 (8 3 k rSn-I), where rSn-I is an intramolecular distance between Sn and I, and j0 denotes the zeroth-order spherical Bessel function.
-
-
-
-
22
-
-
63649094772
-
-
A constraint was imposed on the code developed in Ref. so that the shape of the MD cell, which contains 216 molecules, remains cubic.
-
A constraint was imposed on the code developed in Ref. so that the shape of the MD cell, which contains 216 molecules, remains cubic.
-
-
-
-
23
-
-
63649128197
-
-
The intermolecular interaction was tuned to reproduce the compressibility of CP-I at RT (Ref.). No readjustment of the parameters included in the intermolecular potential was made. We examined liquid structures along the melting curve of the model liquid and found that the model liquid at 1.3 GPa, 1500 K captures well the structural characteristics of the real liquid at 0.4 GPa, 610 K.
-
The intermolecular interaction was tuned to reproduce the compressibility of CP-I at RT (Ref.). No readjustment of the parameters included in the intermolecular potential was made. We examined liquid structures along the melting curve of the model liquid and found that the model liquid at 1.3 GPa, 1500 K captures well the structural characteristics of the real liquid at 0.4 GPa, 610 K.
-
-
-
-
25
-
-
33847685115
-
-
1476-1122 10.1038/nmat1839.
-
H. W. Sheng, H. Z. Liu, Y. Q. Cheng, J. Wen, P. L. Lee, W. K. Luo, S. D. Shastri, and E. Ma, Nature Mater. 1476-1122 10.1038/nmat1839 6, 192 (2007).
-
(2007)
Nature Mater.
, vol.6
, pp. 192
-
-
Sheng, H.W.1
Liu, H.Z.2
Cheng, Y.Q.3
Wen, J.4
Lee, P.L.5
Luo, W.K.6
Shastri, S.D.7
Ma, E.8
-
26
-
-
0141843497
-
-
0953-8984 10.1088/0953-8984/15/36/304,. However, ΔS19 J mole-1 K-1, which is also much larger than that expected in supercooled water, was reported for a polyamorphic transition in supercooled liquid yttria alumina (Ref.).
-
E. G. Ponyatovsky, J. Phys.: Condens. Matter 0953-8984 10.1088/0953-8984/15/36/304 15, 6123 (2003). However, ΔS19 J mole-1 K-1, which is also much larger than that expected in supercooled water, was reported for a polyamorphic transition in supercooled liquid yttria alumina (Ref.).
-
(2003)
J. Phys.: Condens. Matter
, vol.15
, pp. 6123
-
-
Ponyatovsky, E.G.1
-
27
-
-
0000256814
-
-
0028-0836 10.1038/360324a0.
-
P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, Nature (London) 0028-0836 10.1038/360324a0 360, 324 (1992).
-
(1992)
Nature (London)
, vol.360
, pp. 324
-
-
Poole, P.H.1
Sciortino, F.2
Essmann, U.3
Stanley, H.E.4
|