메뉴 건너뛰기




Volumn 178, Issue 7, 2008, Pages 1836-1847

Designing of classifiers based on immune principles and fuzzy rules

Author keywords

Clonal selection principle; Data mining; Fuzzy systems; Pattern classification

Indexed keywords

ALGORITHMS; ANTIBODIES; DATA MINING; DATA REDUCTION; PATTERN RECOGNITION; POPULATION DYNAMICS;

EID: 38649114684     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2007.11.019     Document Type: Article
Times cited : (38)

References (38)
  • 1
    • 33646072176 scopus 로고    scopus 로고
    • Hybrid learning models to get the interpretability-accuracy trade-off in fuzzy modeling
    • Alcalá R., Alcalá-Fdez J., Casillas J., Cordón O., and Herrera F. Hybrid learning models to get the interpretability-accuracy trade-off in fuzzy modeling. Soft Computing 10 9 (2006) 717-734
    • (2006) Soft Computing , vol.10 , Issue.9 , pp. 717-734
    • Alcalá, R.1    Alcalá-Fdez, J.2    Casillas, J.3    Cordón, O.4    Herrera, F.5
  • 2
  • 4
    • 38649128542 scopus 로고    scopus 로고
    • C. Blake, C. Merz, UCI repository of machine learning databases, 1998. .
  • 6
    • 0035897955 scopus 로고    scopus 로고
    • Including a simplicity criterion in the selection of the best rule in a genetic fuzzy learning algorithm
    • Castillo L., Gonzalez A., and Perez P. Including a simplicity criterion in the selection of the best rule in a genetic fuzzy learning algorithm. Fuzzy Sets and Systems 120 2 (2001) 309-321
    • (2001) Fuzzy Sets and Systems , vol.120 , Issue.2 , pp. 309-321
    • Castillo, L.1    Gonzalez, A.2    Perez, P.3
  • 12
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7 1 (2006) 1-30
    • (2006) Journal of Machine Learning Research , vol.7 , Issue.1 , pp. 1-30
    • Demsar, J.1
  • 15
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher R. The use of multiple measurements in taxonomic problems. Annals of Eugenics 7 2 (1936) 179-188
    • (1936) Annals of Eugenics , vol.7 , Issue.2 , pp. 179-188
    • Fisher, R.1
  • 16
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • Friedman M. A comparison of alternative tests of significance for the problem of m rankings. Annals of Mathematical Statistics 11 3 (1940) 86-92
    • (1940) Annals of Mathematical Statistics , vol.11 , Issue.3 , pp. 86-92
    • Friedman, M.1
  • 17
    • 33748894279 scopus 로고    scopus 로고
    • Genetic fuzzy systems: status, critical considerations and future directions
    • Herrera F. Genetic fuzzy systems: status, critical considerations and future directions. International Journal of Computational Intelligence Research 1 1 (2005) 59-67
    • (2005) International Journal of Computational Intelligence Research , vol.1 , Issue.1 , pp. 59-67
    • Herrera, F.1
  • 18
    • 1842587806 scopus 로고    scopus 로고
    • Design of accurate classifiers with a compact fuzzy-rule base using an evolutionary scatter partition of feature space
    • Ho S.Y., Chen H.M., and Ho S.J. Design of accurate classifiers with a compact fuzzy-rule base using an evolutionary scatter partition of feature space. IEEE Transactions on Systems Man and Cybernetics, Part B 34 2 (2004) 1031-1043
    • (2004) IEEE Transactions on Systems Man and Cybernetics, Part B , vol.34 , Issue.2 , pp. 1031-1043
    • Ho, S.Y.1    Chen, H.M.2    Ho, S.J.3
  • 20
    • 33846206446 scopus 로고    scopus 로고
    • Fuzzy integral-based perceptron for two-class pattern classification problems
    • Hu Y.C. Fuzzy integral-based perceptron for two-class pattern classification problems. Information Sciences 177 7 (2007) 1673-1686
    • (2007) Information Sciences , vol.177 , Issue.7 , pp. 1673-1686
    • Hu, Y.C.1
  • 21
    • 22144437737 scopus 로고    scopus 로고
    • Finding useful fuzzy concepts for pattern classification using genetic algorithm
    • Hu Y.C. Finding useful fuzzy concepts for pattern classification using genetic algorithm. Information Sciences 175 1 (2005) 1-19
    • (2005) Information Sciences , vol.175 , Issue.1 , pp. 1-19
    • Hu, Y.C.1
  • 22
    • 0032597810 scopus 로고    scopus 로고
    • Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems
    • Ishibuchi H., Nakashima T., and Murata T. Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems. IEEE Transactions on Systems Man and Cybernetics 29 5 (1999) 601-618
    • (1999) IEEE Transactions on Systems Man and Cybernetics , vol.29 , Issue.5 , pp. 601-618
    • Ishibuchi, H.1    Nakashima, T.2    Murata, T.3
  • 23
    • 0000919523 scopus 로고    scopus 로고
    • Single-objective and two objective genetic algorithms for selecting linguistic rules for pattern classification problems
    • Ishibuchi H., Murata T., and Turksen I.B. Single-objective and two objective genetic algorithms for selecting linguistic rules for pattern classification problems. Fuzzy Sets and Systems 89 (1997) 135-149
    • (1997) Fuzzy Sets and Systems , vol.89 , pp. 135-149
    • Ishibuchi, H.1    Murata, T.2    Turksen, I.B.3
  • 24
    • 33750379875 scopus 로고    scopus 로고
    • Support vector machines with genetic fuzzy feature transformation for biomedical data classification
    • Jin B., Tang Y.C., and Zhang Y.Q. Support vector machines with genetic fuzzy feature transformation for biomedical data classification. Information Sciences 177 2 (2007) 476-489
    • (2007) Information Sciences , vol.177 , Issue.2 , pp. 476-489
    • Jin, B.1    Tang, Y.C.2    Zhang, Y.Q.3
  • 25
    • 0034187785 scopus 로고    scopus 로고
    • Neuro-fuzzy rule generation: survey in soft computing framework
    • Mitra S., and Hayashi Y. Neuro-fuzzy rule generation: survey in soft computing framework. IEEE Transactions on Neural Networks 11 (2000) 748-768
    • (2000) IEEE Transactions on Neural Networks , vol.11 , pp. 748-768
    • Mitra, S.1    Hayashi, Y.2
  • 26
    • 0001703957 scopus 로고    scopus 로고
    • A neuro-fuzzy method to learn fuzzy classification rules from data
    • Nauck D., and Kruse R. A neuro-fuzzy method to learn fuzzy classification rules from data. Fuzzy Sets System 89 3 (1997) 277-288
    • (1997) Fuzzy Sets System , vol.89 , Issue.3 , pp. 277-288
    • Nauck, D.1    Kruse, R.2
  • 29
    • 0035415950 scopus 로고    scopus 로고
    • Compact and transparent fuzzy models and classifiers through iterative complexity reduction
    • Roubos H., and Setnes M. Compact and transparent fuzzy models and classifiers through iterative complexity reduction. IEEE Transaction on Fuzzy Systems 9 (2001) 516-524
    • (2001) IEEE Transaction on Fuzzy Systems , vol.9 , pp. 516-524
    • Roubos, H.1    Setnes, M.2
  • 32
    • 0034294243 scopus 로고    scopus 로고
    • GA-based modeling and classification: complexity and performance
    • Setnes M., and Roubos H. GA-based modeling and classification: complexity and performance. IEEE Transactions on Fuzzy Systems 8 5 (2000) 509-522
    • (2000) IEEE Transactions on Fuzzy Systems , vol.8 , Issue.5 , pp. 509-522
    • Setnes, M.1    Roubos, H.2
  • 34
    • 0035358455 scopus 로고    scopus 로고
    • Learning feed-forward and recurrent fuzzy systems: a genetic approach
    • Surmann H., and Maniadakis M. Learning feed-forward and recurrent fuzzy systems: a genetic approach. Journal of System Architecture 47 7 (2001) 535-556
    • (2001) Journal of System Architecture , vol.47 , Issue.7 , pp. 535-556
    • Surmann, H.1    Maniadakis, M.2
  • 36
    • 29744455079 scopus 로고    scopus 로고
    • A comparison of classification accuracy of four genetic programming-evolved intelligent structures
    • Tsakonas A. A comparison of classification accuracy of four genetic programming-evolved intelligent structures. Information Sciences 176 6 (2006) 691-724
    • (2006) Information Sciences , vol.176 , Issue.6 , pp. 691-724
    • Tsakonas, A.1
  • 38
    • 33947267482 scopus 로고    scopus 로고
    • Weighting fuzzy classification rules using receiver operating characteristics (ROC) analysis
    • Zolghadri M.J., and Mansoori E.G. Weighting fuzzy classification rules using receiver operating characteristics (ROC) analysis. Information Sciences 177 11 (2007) 2296-2307
    • (2007) Information Sciences , vol.177 , Issue.11 , pp. 2296-2307
    • Zolghadri, M.J.1    Mansoori, E.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.