메뉴 건너뛰기




Volumn 2600, Issue , 2003, Pages 65-117

Bayesian kernel methods

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; LEARNING SYSTEMS;

EID: 35248875139     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-36434-x_3     Document Type: Article
Times cited : (24)

References (85)
  • 2
    • 0026860799 scopus 로고
    • Robust linear programming discrimination of two linearly inseparable sets
    • K. P. Bennett and O. L. Mangasarian. Robust linear programming discrimination of two linearly inseparable sets. Optimization Methods and Software, 1:23-34, 1992.
    • (1992) Optimization Methods and Software , vol.1 , pp. 23-34
    • Bennett, K.P.1    Mangasarian, O.L.2
  • 5
    • 0002709342 scopus 로고    scopus 로고
    • Feature selection via concave minimization and support vector machines
    • J. Shavlik, editor, San Francisco, California, Morgan Kaufmann Publishers
    • P. S. Bradley and O. L. Mangasarian. Feature selection via concave minimization and support vector machines. In J. Shavlik, editor, Proceedings of the International Conference on Machine Learning, pages 82-90, San Francisco, California, 1998. Morgan Kaufmann Publishers, ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-03.ps.Z.
    • (1998) Proceedings of the International Conference on Machine Learning , pp. 82-90
    • Bradley, P.S.1    Mangasarian, O.L.2
  • 9
    • 84898947911 scopus 로고    scopus 로고
    • Sparse representation for Gaussian process models
    • T. K. Leen, T. G. Dietterich, and V. Tresp, editors, MIT Press
    • L. Csató and M. Opper. Sparse representation for Gaussian process models. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages 444-450. MIT Press, 2001.
    • (2001) Advances in Neural Information Processing Systems 13 , pp. 444-450
    • Csató, L.1    Opper, M.2
  • 14
    • 0034592781 scopus 로고    scopus 로고
    • Data selection for support vector machine classifiers
    • also: Data Mining Institute Technical Report 00-02, University of Wisconsin, Madison
    • G. Fung and O. L. Mangasarian. Data selection for support vector machine classifiers. In Proceedings of KDD'2000, 2000. also: Data Mining Institute Technical Report 00-02, University of Wisconsin, Madison.
    • (2000) Proceedings of KDD'2000
    • Fung, G.1    Mangasarian, O.L.2
  • 20
    • 0345338764 scopus 로고
    • A.I. Memo 1287, Artificial Intelligence Laboratory, Massachusetts Institute of Technology
    • F. Girosi. Models of noise and robust estimates. A.I. Memo 1287, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1991.
    • (1991) Models of Noise and Robust Estimates
    • Girosi, F.1
  • 22
    • 0004236492 scopus 로고    scopus 로고
    • John Hopkins University Press, Baltimore, MD, 3rd edition
    • G. H. Golub and C. F. Van Loan. Matrix Computations. John Hopkins University Press, Baltimore, MD, 3rd edition, 1996.
    • (1996) Matrix Computations
    • Golub, G.H.1    Van Loan, C.F.2
  • 24
    • 84899020966 scopus 로고    scopus 로고
    • Classification on pairwise proximity data
    • M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, Cambridge, MA, MIT Press
    • T. Graepel, R. Herbrich, P. Bollmann-Sdorra, and K. Obermayer. Classification on pairwise proximity data. In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, Advances in Neural Information Processing Systems 11, pages 438-444, Cambridge, MA, 1999. MIT Press.
    • (1999) Advances in Neural Information Processing Systems , vol.11 , pp. 438-444
    • Graepel, T.1    Herbrich, R.2    Bollmann-Sdorra, P.3    Obermayer, K.4
  • 25
    • 0008267184 scopus 로고    scopus 로고
    • Technical Report UCSC-CRL-99-10, Computer Science Department, UC Santa Cruz
    • D. Haussler. Convolutional kernels on discrete structures. Technical Report UCSC-CRL-99-10, Computer Science Department, UC Santa Cruz, 1999.
    • (1999) Convolutional Kernels on Discrete Structures
    • Haussler, D.1
  • 27
    • 0003035079 scopus 로고    scopus 로고
    • Thore Graepel, and Colin Campbell. Bayes point machines: Estimating the Bayes point in kernel space
    • Ralf Herbrich, Thore Graepel, and Colin Campbell. Bayes point machines: Estimating the Bayes point in kernel space. In Proceedings of IJCAI Workshop Support Vector Machines, pages 23-27, 1999.
    • (1999) Proceedings of IJCAI Workshop Support Vector Machines , pp. 23-27
    • Herbrich, R.1
  • 29
    • 0000171374 scopus 로고
    • Robust statistics: A review
    • P. J. Huber. Robust statistics: a review. Annals of Statistics, 43:1041, 1972.
    • (1972) Annals of Statistics , vol.43 , pp. 1041
    • Huber, P.J.1
  • 30
    • 0008312225 scopus 로고    scopus 로고
    • Technical Report AITR-1668, Artificial Intelligence Laboratory, Massachusetts Institute of Technology
    • T. Jaakkola, M. Meila, and T. Jebara. Maximum entropy discrimination. Technical Report AITR-1668, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 1999.
    • (1999) Maximum Entropy Discrimination
    • Jaakkola, T.1    Meila, M.2    Jebara, T.3
  • 31
    • 84898982939 scopus 로고    scopus 로고
    • Exploiting generative models in discriminative classifiers
    • M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, Cambridge, MA, MIT Press
    • T. S. Jaakkola and D. Haussler. Exploiting generative models in discriminative classifiers. In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, Advances in Neural Information Processing Systems 11, pages 487-493, Cambridge, MA, 1999. MIT Press.
    • (1999) Advances in Neural Information Processing Systems , vol.11 , pp. 487-493
    • Jaakkola, T.S.1    Haussler, D.2
  • 36
    • 0000935895 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • M.I. Jordan, Kluwer Academic
    • M. I. Jordan, Z. Gharamani, T. S. Jaakkola, and L. K. Saul. An introduction to variational methods for graphical models. In Learning in Graphical Models, volume M.I. Jordan, pages 105-162. Kluwer Academic, 1998.
    • (1998) Learning in Graphical Models , pp. 105-162
    • Jordan, M.I.1    Gharamani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 37
    • 84898976425 scopus 로고    scopus 로고
    • Learning nonlinear overcomplete representations for efficient coding
    • M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Cambridge, MA, MIT Press
    • M. S. Lewicki and T. J. Sejnowski. Learning nonlinear overcomplete representations for efficient coding. In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Advances in Neural Information Processing Systems 10, pages 556-562, Cambridge, MA, 1998. MIT Press.
    • (1998) Advances in Neural Information Processing Systems , vol.10 , pp. 556-562
    • Lewicki, M.S.1    Sejnowski, T.J.2
  • 40
    • 0003748256 scopus 로고
    • PhD thesis, Computation and Neural Systems, California Institute of Technology, Pasadena, CA
    • D. J. C. MacKay. Bayesian Methods for Adaptive Models. PhD thesis, Computation and Neural Systems, California Institute of Technology, Pasadena, CA, 1991.
    • (1991) Bayesian Methods for Adaptive Models
    • MacKay, D.J.C.1
  • 41
    • 0000234257 scopus 로고
    • The evidence framework applied to classification networks
    • D. J. C. MacKay. The evidence framework applied to classification networks. Neural Computation, 4(5):720-736, 1992.
    • (1992) Neural Computation , vol.4 , Issue.5 , pp. 720-736
    • MacKay, D.J.C.1
  • 43
    • 0000963583 scopus 로고
    • Linear and nonlinear separation of patterns by linear programming
    • O. L. Mangasarian. Linear and nonlinear separation of patterns by linear programming. Operations Research, 13:444-452, 1965.
    • (1965) Operations Research , vol.13 , pp. 444-452
    • Mangasarian, O.L.1
  • 44
    • 0029291966 scopus 로고
    • Sparse approximate solutions to linear systems
    • B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM Journal of Computing, 25(2):227-234, 1995.
    • (1995) SIAM Journal of Computing , vol.25 , Issue.2 , pp. 227-234
    • Natarajan, B.K.1
  • 45
    • 0242427913 scopus 로고
    • Technical Report CRG-TR-94-1, Dept. of Computer Science, University of Toronto
    • R. Neal. Priors for infinite networks. Technical Report CRG-TR-94-1, Dept. of Computer Science, University of Toronto, 1994.
    • (1994) Priors for Infinite Networks
    • Neal, R.1
  • 48
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381:607-609, 1996.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 49
    • 0039814276 scopus 로고    scopus 로고
    • Mean field methods for classification with Gaussian processes
    • M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, Cambridge, MA, MIT Press
    • M. Opper and O. Winther. Mean field methods for classification with Gaussian processes. In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, Advances in Neural Information Processing Systems 11, pages 309-315, Cambridge, MA, 1999. MIT Press.
    • (1999) Advances in Neural Information Processing Systems , vol.11 , pp. 309-315
    • Opper, M.1    Winther, O.2
  • 50
    • 0002755771 scopus 로고    scopus 로고
    • Gaussian processes and SVM: Mean field and leave-one-out
    • A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Cambridge, MA, MIT Press
    • M. Opper and O. Winther. Gaussian processes and SVM: mean field and leave-one-out. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 311-326, Cambridge, MA, 2000. MIT Press.
    • (2000) Advances in Large Margin Classifiers , pp. 311-326
    • Opper, M.1    Winther, O.2
  • 51
    • 0003243224 scopus 로고    scopus 로고
    • Probabilities for SV machines
    • A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Cambridge, MA, MIT Press
    • J. Platt. Probabilities for SV machines. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 61-73, Cambridge, MA, 2000. MIT Press.
    • (2000) Advances in Large Margin Classifiers , pp. 61-73
    • Platt, J.1
  • 52
    • 0016765357 scopus 로고
    • On optimal nonlinear associative recall
    • T. Poggio. On optimal nonlinear associative recall. Biological Cybernetics, 19:201-209, 1975.
    • (1975) Biological Cybernetics , vol.19 , pp. 201-209
    • Poggio, T.1
  • 57
  • 58
    • 0013406706 scopus 로고    scopus 로고
    • Computing the Bayes kernel classifier
    • A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Cambridge, MA, MIT Press
    • P. Ruján and M. Marchand. Computing the Bayes kernel classifier. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 329-347, Cambridge, MA, 2000. MIT Press.
    • (2000) Advances in Large Margin Classifiers , pp. 329-347
    • Ruján, P.1    Marchand, M.2
  • 59
    • 0002536264 scopus 로고    scopus 로고
    • Playing billiards in version space
    • Pál Ruján. Playing billiards in version space. Neural Computation, 9:99-122, 1997.
    • (1997) Neural Computation , vol.9 , pp. 99-122
    • Ruján, P.1
  • 61
    • 0002570938 scopus 로고    scopus 로고
    • Kernel principal component analysis
    • B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, MIT Press, Cambridge, MA
    • B. Schölkopf, A. Smola, and K.-R. Müller. Kernel principal component analysis. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 327-352. MIT Press, Cambridge, MA, 1999.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 327-352
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3
  • 66
    • 0004094721 scopus 로고    scopus 로고
    • PhD thesis, Technische Universität Berlin, GMD Research Series No. 25
    • A. J. Smola. Learning with Kernels. PhD thesis, Technische Universität Berlin, 1998. GMD Research Series No. 25.
    • (1998) Learning with Kernels
    • Smola, A.J.1
  • 67
    • 84899000575 scopus 로고    scopus 로고
    • Sparse greedy Gaussian process regression
    • T. K. Leen, T. G. Dietterich, and V. Tresp, editors, MIT Press
    • A. J. Smola and P. L. Bartlett. Sparse greedy Gaussian process regression. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages 619-625. MIT Press, 2001.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 619-625
    • Smola, A.J.1    Bartlett, P.L.2
  • 68
    • 0002493574 scopus 로고    scopus 로고
    • Sparse greedy matrix approximation for machine learning
    • P. Langley, editor, San Francisco, Morgan Kaufmann Publishers
    • A. J. Smola and B. Schölkopf. Sparse greedy matrix approximation for machine learning. In P. Langley, editor, Proceedings of the International Conference on Machine Learning, pages 911-918, San Francisco, 2000. Morgan Kaufmann Publishers.
    • (2000) Proceedings of the International Conference on Machine Learning , pp. 911-918
    • Smola, A.J.1    Schölkopf, B.2
  • 69
    • 35248820396 scopus 로고    scopus 로고
    • Cholesky factorization for rank-k modifications of diagonal matrices
    • submitted
    • A.J. Smola and S.V.N. Vishwanathan. Cholesky factorization for rank-k modifications of diagonal matrices. SIAM Journal of Matrix Analysis, 2002. submitted.
    • (2002) SIAM Journal of Matrix Analysis
    • Smola, A.J.1    Vishwanathan, S.V.N.2
  • 71
    • 84986980101 scopus 로고
    • Sequential updating of conditional probabilities on directed graphical structures
    • D. J. Spiegelhalter and S. L. Lauritzen. Sequential updating of conditional probabilities on directed graphical structures. Networks, 20:579-605, 1990.
    • (1990) Networks , vol.20 , pp. 579-605
    • Spiegelhalter, D.J.1    Lauritzen, S.L.2
  • 73
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • M. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1:211-244, 2001.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.1
  • 74
    • 0034320395 scopus 로고    scopus 로고
    • A Bayesian committee machine
    • V. Tresp. A Bayesian committee machine. Neural Computation, 12(11):2719-2741, 2000.
    • (2000) Neural Computation , vol.12 , Issue.11 , pp. 2719-2741
    • Tresp, V.1
  • 76
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Cambridge, MA, MIT Press
    • V. Vapnik, S. Golowich, and A. Smola. Support vector method for function approximation, regression estimation, and signal processing. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems 9, pages 281-287, Cambridge, MA, 1997. MIT Press.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 78
    • 0004202459 scopus 로고    scopus 로고
    • CSD-TR-98- 11, Royal Holloway, University of London, Egham, Surrey, UK
    • C. Watkins. Dynamic alignment kernels. CSD-TR-98- 11, Royal Holloway, University of London, Egham, Surrey, UK, 1999.
    • (1999) Dynamic Alignment Kernels
    • Watkins, C.1
  • 80
    • 0003017575 scopus 로고    scopus 로고
    • Prediction with Gaussian processes: From linear regression to linear prediction and beyond
    • M. I. Jordan, editor, Kluwer Academic
    • C. K. I. Williams. Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In M. I. Jordan, editor, Learning and Inference in Graphical Models. Kluwer Academic, 1998.
    • (1998) Learning and Inference in Graphical Models
    • Williams, C.K.I.1
  • 81
    • 0003017575 scopus 로고    scopus 로고
    • Prediction with Gaussian processes: From linear regression to linear prediction and beyond
    • Micheal Jordan, editor, MIT Press
    • C. K. I. Williams. Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In Micheal Jordan, editor, Learning and Inference in Graphical Models, pages 599-621. MIT Press, 1999.
    • (1999) Learning and Inference in Graphical Models , pp. 599-621
    • Williams, C.K.I.1
  • 82
    • 85072768928 scopus 로고    scopus 로고
    • Gaussian processes for regression
    • D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Cambridge, MA, MIT Press
    • C. K. I. Williams and C. E. Rasmussen. Gaussian processes for regression. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information Processing Systems 8, pages 514-520, Cambridge, MA, 1996. MIT Press.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 514-520
    • Williams, C.K.I.1    Rasmussen, C.E.2
  • 83
    • 84899010839 scopus 로고    scopus 로고
    • Using the Nystrom method to speed up kernel machines
    • T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Cambridge, MA, MIT Press
    • Christoper K. I. Williams and Matthias Seeger. Using the Nystrom method to speed up kernel machines. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages 682-688, Cambridge, MA, 2001. MIT Press.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 682-688
    • Williams, C.K.I.1    Seeger, M.2
  • 85
    • 0141819626 scopus 로고    scopus 로고
    • Some sparse approximation bounds for regression problems
    • Morgan Kaufmann, San Francisco, CA
    • T. Zhang. Some sparse approximation bounds for regression problems. In Proc. 18th International Conf. on Machine Learning, pages 624-631. Morgan Kaufmann, San Francisco, CA, 2001.
    • (2001) Proc. 18th International Conf. on Machine Learning , pp. 624-631
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.