메뉴 건너뛰기




Volumn 24, Issue 6, 2008, Pages

A proximal decomposition method for solving convex variational inverse problems

Author keywords

[No Author keywords available]

Indexed keywords

CONVERGENCE OF NUMERICAL METHODS; DIFFERENTIAL EQUATIONS; IMAGE PROCESSING; QUEUEING NETWORKS;

EID: 62649171652     PISSN: 02665611     EISSN: 13616420     Source Type: Journal    
DOI: 10.1088/0266-5611/24/6/065014     Document Type: Article
Times cited : (221)

References (52)
  • 3
    • 0001448913 scopus 로고
    • On the convergence of von Neumann's alternating projection algorithm for two sets
    • Bauschke H H and Borwein J M 1993 On the convergence of von Neumann's alternating projection algorithm for two sets Set-Valued Anal. 1 185-212
    • (1993) Set-Valued Anal. , vol.1 , Issue.2 , pp. 185-212
    • Bauschke, H.H.1    Borwein, J.M.2
  • 4
    • 0030246542 scopus 로고    scopus 로고
    • On projection algorithms for solving convex feasibility problems
    • Bauschke H H and Borwein J M 1996 On projection algorithms for solving convex feasibility problems SIAM Rev. 38 367-426
    • (1996) SIAM Rev. , vol.38 , Issue.3 , pp. 367-426
    • Bauschke, H.H.1    Borwein, J.M.2
  • 6
    • 36749005582 scopus 로고    scopus 로고
    • A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration
    • Bioucas-Dias J M and Figueiredo M A 2007 A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration IEEE Trans. Image Process. 16 2992-3004
    • (2007) IEEE Trans. Image Process. , vol.16 , Issue.12 , pp. 2992-3004
    • Bioucas-Dias, J.M.1    Figueiredo, M.A.2
  • 7
    • 0002436271 scopus 로고
    • A method for finding projections onto the intersection of convex sets in Hilbert spaces
    • Boyle J P and Dykstra R L 1986 A method for finding projections onto the intersection of convex sets in Hilbert spaces Lecture Notes Stat. 37 28-47
    • (1986) Lecture Notes Stat. , vol.37 , pp. 28-47
    • Boyle, J.P.1    Dykstra, R.L.2
  • 8
    • 41449091142 scopus 로고    scopus 로고
    • Iterated hard shrinkage for minimization problems with sparsity constraints
    • Bredies K and Lorenz D A 2008 Iterated hard shrinkage for minimization problems with sparsity constraints SIAM J. Sci. Comput. 30 657-83
    • (2008) SIAM J. Sci. Comput. , vol.30 , Issue.2 , pp. 657-683
    • Bredies, K.1    Lorenz, D.A.2
  • 11
    • 0035565698 scopus 로고    scopus 로고
    • Proximity function minimization using multiple Bregman projections, with applications to split feasibility and Kullback-Leibler distance minimization
    • Byrne C L and Censor Y 2001 Proximity function minimization using multiple Bregman projections, with applications to split feasibility and Kullback-Leibler distance minimization Ann. Oper. Res. 105 77-98
    • (2001) Ann. Oper. Res. , vol.105 , Issue.1-4 , pp. 77-98
    • Byrne, C.L.1    Censor, Y.2
  • 12
    • 2442750738 scopus 로고
    • Iterative methods for the convex feasibility problem
    • Censor Y 1984 Iterative methods for the convex feasibility problem Ann. Discrete Math. 20 83-91
    • (1984) Ann. Discrete Math. , vol.20 , pp. 83-91
    • Censor, Y.1
  • 13
    • 33646480792 scopus 로고    scopus 로고
    • A unified approach for inversion problems in intensity-modulated radiation therapy
    • Censor Y, Bortfeld T, Martin B and Tromov A 2006 A unified approach for inversion problems in intensity-modulated radiation therapy Phys. Med. Biol. 51 2353-65
    • (2006) Phys. Med. Biol. , vol.51 , Issue.10 , pp. 2353-2365
    • Censor, Y.1    Bortfeld, T.2    Martin, B.3    Tromov, A.4
  • 14
    • 0032022704 scopus 로고    scopus 로고
    • Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage
    • Chambolle A, DeVore R A, Lee N Y and Lucier B J 1998 Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage IEEE Trans. Image Process. 7 319-35
    • (1998) IEEE Trans. Image Process. , vol.7 , Issue.3 , pp. 319-335
    • Chambolle, A.1    Devore, R.A.2    Lee, N.Y.3    Lucier, B.J.4
  • 15
    • 0031492191 scopus 로고    scopus 로고
    • Image recovery via total variation minimization and related problems
    • Chambolle A and Lions P-L 1997 Image recovery via total variation minimization and related problems Numer. Math. 76 167-88
    • (1997) Numer. Math. , vol.76 , Issue.2 , pp. 167-188
    • Chambolle, A.1    Lions, P.-L.2
  • 16
    • 34548678881 scopus 로고    scopus 로고
    • A variational formulation for frame-based inverse problems
    • Chaux C, Combettes P L, Pesquet J-C and Wajs V R 2007 A variational formulation for frame-based inverse problems Inverse Problems 23 1495-518
    • (2007) Inverse Problems , vol.23 , Issue.4 , pp. 1495-1518
    • Chaux, C.1    Combettes, P.L.2    Pesquet, J.-C.3    Wajs, V.R.4
  • 17
    • 0028543165 scopus 로고
    • Inconsistent signal feasibility problems: Least-squares solutions in a product space
    • Combettes P L 1994 Inconsistent signal feasibility problems: least-squares solutions in a product space IEEE Trans. Signal Process. 42 2955-66
    • (1994) IEEE Trans. Signal Process. , vol.42 , Issue.11 , pp. 2955-2966
    • Combettes, P.L.1
  • 18
    • 77954607855 scopus 로고    scopus 로고
    • The convex feasibility problem in image recovery
    • Combettes P L 1996 The convex feasibility problem in image recovery Advances in Imaging and Electron Physics vol 95 ed P Hawkes (New York: Academic) pp 155-270
    • (1996) Advances in Imaging and Electron Physics , vol.95 , pp. 155-270
    • Combettes, P.L.1
  • 19
    • 0031118954 scopus 로고    scopus 로고
    • Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections
    • Combettes P L 1997 Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections IEEE Trans. Image Process. 6 493-506
    • (1997) IEEE Trans. Image Process. , vol.6 , Issue.4 , pp. 493-506
    • Combettes, P.L.1
  • 20
    • 0033889575 scopus 로고    scopus 로고
    • Strong convergence of block-iterative outer approximation methods for convex optimization
    • Combettes P L 2000 Strong convergence of block-iterative outer approximation methods for convex optimization SIAM J. Control Optim. 38 538-65
    • (2000) SIAM J. Control Optim. , vol.38 , Issue.2 , pp. 538-565
    • Combettes, P.L.1
  • 21
    • 0038538416 scopus 로고    scopus 로고
    • A block-iterative surrogate constraint splitting method for quadratic signal recovery
    • Combettes P L 2003 A block-iterative surrogate constraint splitting method for quadratic signal recovery IEEE Trans. Signal Process. 51 1771-82
    • (2003) IEEE Trans. Signal Process. , vol.51 , Issue.7 , pp. 1771-1782
    • Combettes, P.L.1
  • 22
    • 13244295576 scopus 로고    scopus 로고
    • Solving monotone inclusions via compositions of nonexpansive averaged operators
    • Combettes P L 2004 Solving monotone inclusions via compositions of nonexpansive averaged operators Optimization 53 475-504
    • (2004) Optimization , vol.53 , Issue.5-6 , pp. 475-504
    • Combettes, P.L.1
  • 23
    • 0032653272 scopus 로고    scopus 로고
    • Hard-constrained inconsistent signal feasibility problems
    • Combettes P L and Bondon P 1999 Hard-constrained inconsistent signal feasibility problems IEEE Trans. Signal Process. 47 2460-68
    • (1999) IEEE Trans. Signal Process. , vol.47 , Issue.9 , pp. 2460-2468
    • Combettes, P.L.1    Bondon, P.2
  • 24
    • 34548677063 scopus 로고    scopus 로고
    • Proximal thresholding algorithm for minimization over orthonormal bases
    • Combettes P L and Pesquet J-C 2007 Proximal thresholding algorithm for minimization over orthonormal bases SIAM J. Optim. 18 1351-76
    • (2007) SIAM J. Optim. , vol.18 , Issue.4 , pp. 1351-1376
    • Combettes, P.L.1    Pesquet, J.-C.2
  • 25
    • 39449085530 scopus 로고    scopus 로고
    • A Douglas-rachford splitting approach to nonsmooth convex variational signal recovery
    • Combettes P L and Pesquet J-C 2007 A Douglas-rachford splitting approach to nonsmooth convex variational signal recovery IEEE J. Selected Topics Signal Process. 1 564-74
    • (2007) IEEE J. Selected Topics Signal Process. , vol.1 , Issue.4 , pp. 564-574
    • Combettes, P.L.1    Pesquet, J.-C.2
  • 26
    • 30844438177 scopus 로고    scopus 로고
    • Signal recovery by proximal forward-backward splitting
    • Combettes P L and Wajs V R 2005 Signal recovery by proximal forward-backward splitting Multiscale Model. Simul. 4 1168-200
    • (2005) Multiscale Model. Simul. , vol.4 , Issue.4 , pp. 1168-1200
    • Combettes, P.L.1    Wajs, V.R.2
  • 28
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • Daubechies I, Defrise M and Mol C De 2004 An iterative thresholding algorithm for linear inverse problems with a sparsity constraint Comm. Pure Appl. Math. 57 1413-57
    • (2004) Comm. Pure Appl. Math. , vol.57 , Issue.11 , pp. 1413-1457
    • Daubechies, I.1    Defrise, M.2    De M., C.3
  • 29
    • 78649765600 scopus 로고    scopus 로고
    • Iteratively solving linear inverse problems under general convex constraints
    • Daubechies I, Teschke G and Vese L 2007 Iteratively solving linear inverse problems under general convex constraints Inverse Problems and Imaging 1 29-46
    • (2007) Inverse Problems and Imaging , vol.1 , pp. 29-46
    • Daubechies, I.1    Teschke, G.2    Vese, L.3
  • 33
    • 36749084177 scopus 로고    scopus 로고
    • Domain decomposition methods for linear inverse problems with sparsity constraints
    • Fornasier M 2007 Domain decomposition methods for linear inverse problems with sparsity constraints Inverse Problems 23 2505-26
    • (2007) Inverse Problems , vol.23 , Issue.6 , pp. 2505-2526
    • Fornasier, M.1
  • 34
    • 0001886656 scopus 로고
    • A cyclic projection algorithm via duality
    • Gaffke N and Mathar R 1989 A cyclic projection algorithm via duality Metrika 36 29-54
    • (1989) Metrika , vol.36 , Issue.1 , pp. 29-54
    • Gaffke, N.1    Mathar, R.2
  • 35
    • 33749525830 scopus 로고    scopus 로고
    • Iterative selection methods for common fixed point problems
    • Hirstoaga S A 2006 Iterative selection methods for common fixed point problems J. Math. Anal. Appl. 324 1020-35
    • (2006) J. Math. Anal. Appl. , vol.324 , Issue.2 , pp. 1020-1035
    • Hirstoaga, S.A.1
  • 37
    • 0031285686 scopus 로고    scopus 로고
    • Surrogate projection methods for finding fixed points of firmly inonexpansive mappings
    • Kiwiel K C and Łopuch B 1997 Surrogate projection methods for finding fixed points of firmly inonexpansive mappings SIAM J. Optim. 7 1084-102
    • (1997) SIAM J. Optim. , vol.7 , Issue.4 , pp. 1084-1102
    • Kiwiel, K.C.1    Łopuch, B.2
  • 38
    • 0020766276 scopus 로고
    • Signal reconstruction from phase by projection onto convex sets
    • Levi A and Stark H 1983 Signal reconstruction from phase by projection onto convex sets J. Opt. Soc. Amer. 73 810-22
    • (1983) J. Opt. Soc. Amer. , vol.73 , Issue.6 , pp. 810-822
    • Levi, A.1    Stark, H.2
  • 39
    • 0000345334 scopus 로고
    • Splitting algorithms for the sum of two nonlinear operators
    • Lions P-L and Mercier B 1979 Splitting algorithms for the sum of two nonlinear operators SIAM J. Numer. Anal. 16 964-79
    • (1979) SIAM J. Numer. Anal. , vol.16 , Issue.6 , pp. 964-979
    • Lions, P.-L.1    Mercier, B.2
  • 40
    • 0000276924 scopus 로고
    • Proximité et dualité dans un espace hilbertien
    • Moreau J-J 1965 Proximité et dualité dans un espace hilbertien Bull. Soc. Math. France 93 273-99
    • (1965) Bull. Soc. Math. France , vol.93 , pp. 273-299
    • Moreau, J.-J.1
  • 41
    • 0029547677 scopus 로고
    • Optimal pulse shape design for digital communication systems by projections onto convex sets
    • Nobakht R A and Civanlar M R 1995 Optimal pulse shape design for digital communication systems by projections onto convex sets IEEE Trans. Commun. 43 2874-77
    • (1995) IEEE Trans. Commun. , vol.43 , Issue.12 , pp. 2874-2877
    • Nobakht, R.A.1    Civanlar, M.R.2
  • 43
    • 0032624317 scopus 로고    scopus 로고
    • Signal representation in the combined phase-spatial space: Reconstruction and criteria for uniqueness
    • Porat M and Shachor G 1999 Signal representation in the combined phase-spatial space: Reconstruction and criteria for uniqueness IEEE Trans. Signal Process. 47 1701-07
    • (1999) IEEE Trans. Signal Process. , vol.47 , Issue.6 , pp. 1701-1707
    • Porat, M.1    Shachor, G.2
  • 45
    • 44049111982 scopus 로고
    • Nonlinear total variation based noise removal algorithms
    • Rudin L I, Osher S and Fatemi E 1992 Nonlinear total variation based noise removal algorithms Physica D 60 259-68
    • (1992) Physica , vol.60 , Issue.1-4 , pp. 259-268
    • Rudin, L.I.1    Osher, S.2    Fatemi, E.3
  • 46
    • 0022076946 scopus 로고
    • Applications of the method of partial inverses to convex programming: Decomposition
    • Spingarn J E 1985 Applications of the method of partial inverses to convex programming: Decomposition Math. Programming 32 199-223
    • (1985) Math. Programming , vol.32 , Issue.2 , pp. 199-223
    • Spingarn, J.E.1
  • 48
    • 0346316863 scopus 로고    scopus 로고
    • Edge-preserving and scale-dependent properties of total variation regularization
    • Strong D and Chan T 2003 Edge-preserving and scale-dependent properties of total variation regularization Inverse Problems 19 pp S165-S187
    • (2003) Inverse Problems , vol.19 , Issue.6
    • Strong, D.1    Chan, T.2
  • 49
    • 33645712308 scopus 로고    scopus 로고
    • Just relax: Convex programming methods for identifying sparse signals in noise
    • Tropp J A 2006 Just relax: Convex programming methods for identifying sparse signals in noise IEEE Trans. Inform. Theory 52 1030-51
    • (2006) IEEE Trans. Inform. Theory , vol.52 , Issue.3 , pp. 1030-1051
    • Tropp, J.A.1
  • 50
    • 0032002260 scopus 로고    scopus 로고
    • Quadratic optimization of fixed points of nonexpansive mappings in Hilbert space
    • Yamada I, Ogura N, Yamashita Y and Sakaniwa K 1998 Quadratic optimization of fixed points of nonexpansive mappings in Hilbert space Numer. Funct. Anal. Optim. 19 165-90
    • (1998) Numer. Funct. Anal. Optim. , vol.19 , Issue.1 , pp. 165-190
    • Yamada, I.1    Ogura, N.2    Yamashita, Y.3    Sakaniwa, K.4
  • 51
    • 0020191832 scopus 로고
    • Image restoration by the method of convex projections: Part 1-theory
    • Youla D C and Webb H 1982 Image restoration by the method of convex projections: part 1-theory IEEE Trans. Medical Imaging 1 81-94
    • (1982) IEEE Trans. Medical Imaging , vol.1 , Issue.2 , pp. 81-94
    • Youla, D.C.1    Webb, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.