-
2
-
-
0030246542
-
On projection algorithms for solving convex feasibility problems
-
H. H. BAUSCHKE AND J. M. BORWEIN, On projection algorithms for solving convex feasibility problems, SIAM Rev., 38 (1996), pp. 367-426.
-
(1996)
SIAM Rev.
, vol.38
, pp. 367-426
-
-
Bauschke, H.H.1
Borwein, J.M.2
-
3
-
-
0000256894
-
Nonexpansive projections and resolvents of accretive operators m Banach spaces
-
R. E. BRUCK, JR. AND S. REICH, Nonexpansive projections and resolvents of accretive operators m Banach spaces, Houston J. Math., 3 (1977), pp. 459-470.
-
(1977)
Houston J. Math.
, vol.3
, pp. 459-470
-
-
Bruck R.E., Jr.1
Reich, S.2
-
4
-
-
0001488677
-
Construction d'un point fixe commun á une famille de contractions fermes
-
P. L. COMBETTES, Construction d'un point fixe commun á une famille de contractions fermes, C. R. Acad. Sci. Paris, Sér. I Math., 320 (1995), pp. 1385-1390.
-
(1995)
C. R. Acad. Sci. Paris, Sér. I Math.
, vol.320
, pp. 1385-1390
-
-
Combettes, P.L.1
-
5
-
-
85033091469
-
-
Tech. report, Dept. of Electrical Eng., City College and Graduate School, City Univ. of New York, New York
-
P. L. COMBETTES, Convex Set Theoretic Image Recovery by Extrapolated Iterations of Parallel Subgradient Projections, Tech. report, Dept. of Electrical Eng., City College and Graduate School, City Univ. of New York, New York, 1995.
-
(1995)
Convex Set Theoretic Image Recovery by Extrapolated Iterations of Parallel Subgradient Projections
-
-
Combettes, P.L.1
-
6
-
-
0031148181
-
Hilbertian convex feasibility problem: Convergence of projection methods
-
P. L. COMBETTES, Hilbertian convex feasibility problem: Convergence of projection methods, Appl. Math. Optim., 35 (1997), pp. 311-330.
-
(1997)
Appl. Math. Optim.
, vol.35
, pp. 311-330
-
-
Combettes, P.L.1
-
7
-
-
0027113845
-
On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators
-
J. ECKSTEIN AND D. P. BERTSEKAS, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Programming, 55 (1992), pp. 293-318.
-
(1992)
Math. Programming
, vol.55
, pp. 293-318
-
-
Eckstein, J.1
Bertsekas, D.P.2
-
8
-
-
0004177997
-
-
Ph.D. thesis, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA, June Report LIDS-TH-1877, Laboratory for Information and Decision Sciences, MIT
-
J. ECKSTEIN, Splitting Methods for Monotone Operators with Applications to Parallel Optimization, Ph.D. thesis, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA, June 1989. Report LIDS-TH-1877, Laboratory for Information and Decision Sciences, MIT.
-
(1989)
Splitting Methods for Monotone Operators with Applications to Parallel Optimization
-
-
Eckstein, J.1
-
9
-
-
0010679622
-
Successive averages of firmly nonexpansive mappings
-
S. D. FLÅM, Successive averages of firmly nonexpansive mappings, Math. Oper. Res., 20 (1995), pp. 497-512.
-
(1995)
Math. Oper. Res.
, vol.20
, pp. 497-512
-
-
Flåm, S.D.1
-
10
-
-
0003786974
-
-
Marcel Dekker, New York
-
K. GOEBEL AND S. REICH, EDS., Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings, Marcel Dekker, New York, 1984.
-
(1984)
Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings
-
-
Goebel, K.1
Reich, S.2
-
11
-
-
0001001503
-
Parallel projected aggregation methods for solving the convex feasibility problem
-
U. GARCÍA-PALOMARES, Parallel projected aggregation methods for solving the convex feasibility problem, SIAM J. Optim., 3 (1993), pp. 882-900.
-
(1993)
SIAM J. Optim.
, vol.3
, pp. 882-900
-
-
García-Palomares, U.1
-
12
-
-
0000320260
-
The method of projections for finding a common point of convex sets
-
in Russian
-
L. G. GURIN, B. T. POLYAK, AND E. V. RAIK, The method of projections for finding a common point of convex sets, Zh. Vychisl. Mat. i Mat. Fiz., 7 (1967), pp. 1211-1228 (in Russian). English transl. in U. S. S. R. Comput. Math, and Math. Phys., 7 (1967), pp. 1-24.
-
(1967)
Zh. Vychisl. Mat. I Mat. Fiz.
, vol.7
, pp. 1211-1228
-
-
Gurin, L.G.1
Polyak, B.T.2
Raik, E.V.3
-
13
-
-
84863705575
-
-
English transl.
-
L. G. GURIN, B. T. POLYAK, AND E. V. RAIK, The method of projections for finding a common point of convex sets, Zh. Vychisl. Mat. i Mat. Fiz., 7 (1967), pp. 1211-1228 (in Russian). English transl. in U. S. S. R. Comput. Math, and Math. Phys., 7 (1967), pp. 1-24.
-
(1967)
U. S. S. R. Comput. Math, and Math. Phys.
, vol.7
, pp. 1-24
-
-
-
14
-
-
0000699491
-
On approximate solutions of systems of linear inequalities
-
A. J. HOFFMAN, On approximate solutions of systems of linear inequalities, J. Res. Nat. Bur. Standards, 49 (1952), pp. 263-265.
-
(1952)
J. Res. Nat. Bur. Standards
, vol.49
, pp. 263-265
-
-
Hoffman, A.J.1
-
15
-
-
0004237336
-
-
Nauka, Moscow, (in Russian). English transl., North-Holland, Amsterdam
-
A. D. IOFFE AND V. M. TIKHOMIROV, Theory of Extremal Problems, Nauka, Moscow, 1974 (in Russian). English transl., North-Holland, Amsterdam, 1979.
-
(1974)
Theory of Extremal Problems
-
-
Ioffe, A.D.1
Tikhomirov, V.M.2
-
16
-
-
85033091687
-
-
Tech. report, Systems Research Institute, Warsaw, November Revised January
-
K. C. KIWIEL AND B. ŁOPUCH, Surrogate Projection Methods for Finding Fixed Points of Firmly Nonexpansive Mappings, Tech. report, Systems Research Institute, Warsaw, November 1994. Revised January 1996.
-
(1994)
Surrogate Projection Methods for Finding Fixed Points of Firmly Nonexpansive Mappings
-
-
Kiwiel, K.C.1
Łopuch, B.2
-
17
-
-
21844522404
-
A Cholesky dual method for proximal piecewise linear programming
-
K. C. KIWIEL, A Cholesky dual method for proximal piecewise linear programming, Numer. Math., 68 (1994), pp. 325-340.
-
(1994)
Numer. Math.
, vol.68
, pp. 325-340
-
-
Kiwiel, K.C.1
-
18
-
-
0345295872
-
Block-iterative surrogate projection methods for convex feasibility problems
-
K. C. KIWIEL, Block-iterative surrogate projection methods for convex feasibility problems, Linear Algebra Appl., 215 (1995), pp. 225-260.
-
(1995)
Linear Algebra Appl.
, vol.215
, pp. 225-260
-
-
Kiwiel, K.C.1
-
19
-
-
0030110299
-
The efficiency of subgradient projection methods for convex optimization, part I: General level methods
-
K. C. KIWIEL, The efficiency of subgradient projection methods for convex optimization, part I: General level methods, SIAM J. Control Optim., 34 (1996), pp. 660-676.
-
(1996)
SIAM J. Control Optim.
, vol.34
, pp. 660-676
-
-
Kiwiel, K.C.1
-
20
-
-
0030104971
-
The efficiency of subgradient projection methods for convex optimization, part II: Implementations and extensions
-
K. C. KIWIEL, The efficiency of subgradient projection methods for convex optimization, part II: Implementations and extensions, SIAM J. Control Optim., 34 (1996), pp. 677-697.
-
(1996)
SIAM J. Control Optim.
, vol.34
, pp. 677-697
-
-
Kiwiel, K.C.1
-
21
-
-
0038913767
-
Monotone Gram matrices and deepest surrogate inequalities in accelerated relaxation methods for convex feasibility problems
-
K. C. KIWIEL, Monotone Gram matrices and deepest surrogate inequalities in accelerated relaxation methods for convex feasibility problems, Linear Algebra Appl., 252 (1997), pp. 27-33.
-
(1997)
Linear Algebra Appl.
, vol.252
, pp. 27-33
-
-
Kiwiel, K.C.1
-
23
-
-
0010761925
-
On a relaxation method of solving systems of linear inequalities
-
in Russian
-
YU. I. MERZLYAKOV, On a relaxation method of solving systems of linear inequalities, Zh. Vychisl. Mat. i Mat. Fiz., 2 (1962), pp. 482-487 (in Russian). English transl. in U. S. S. R. Comput. Math, and Math. Phys., 2 (1962), pp. 504-510.
-
(1962)
Zh. Vychisl. Mat. I Mat. Fiz.
, vol.2
, pp. 482-487
-
-
Merzlyakov, Yu.I.1
-
24
-
-
0343456123
-
-
English transl.
-
YU. I. MERZLYAKOV, On a relaxation method of solving systems of linear inequalities, Zh. Vychisl. Mat. i Mat. Fiz., 2 (1962), pp. 482-487 (in Russian). English transl. in U. S. S. R. Comput. Math, and Math. Phys., 2 (1962), pp. 504-510.
-
(1962)
U. S. S. R. Comput. Math, and Math. Phys.
, vol.2
, pp. 504-510
-
-
-
25
-
-
0010723713
-
Symmetric duality, and a convergent subgradient method for discrete, linear, constrained approximation problems with arbitrary norms appearing in the objective function and in the constraints
-
W. OETTLI, Symmetric duality, and a convergent subgradient method for discrete, linear, constrained approximation problems with arbitrary norms appearing in the objective function and in the constraints, Approx. Theory Appl., 14 (1975), pp. 43-50.
-
(1975)
Approx. Theory Appl.
, vol.14
, pp. 43-50
-
-
Oettli, W.1
-
26
-
-
84968481460
-
Weak convergence of the sequence of successive approximations for nonexpansive mappings
-
Z. OPIAL, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. (N.S.), 73 (1967), pp. 591-597.
-
(1967)
Bull. Amer. Math. Soc. (N.S.)
, vol.73
, pp. 591-597
-
-
Opial, Z.1
-
27
-
-
0003218598
-
Convex functions, monotone operators and differentiability
-
second ed., Springer-Verlag, Berlin
-
R. R. PHELPS, Convex Functions, Monotone Operators and Differentiability, second ed., Lecture Notes in Mathematics 1364, Springer-Verlag, Berlin, 1993.
-
(1993)
Lecture Notes in Mathematics
, vol.1364
-
-
Phelps, R.R.1
-
28
-
-
0016985417
-
Monotone operators and the proximal point algorithm
-
R. T. ROCKAFELLAR, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), pp. 877-898.
-
(1976)
SIAM J. Control Optim.
, vol.14
, pp. 877-898
-
-
Rockafellar, R.T.1
-
29
-
-
0004168467
-
-
Nauka, Moscow, in Russian
-
A. G. SUKHAREV, A. V. TIMOKHOV, AND V. V. FEDOROV, A Course on Optimization Methods, Nauka, Moscow, 1986 (in Russian).
-
(1986)
A Course on Optimization Methods
-
-
Sukharev, A.G.1
Timokhov, A.V.2
Fedorov, V.V.3
-
30
-
-
0000320937
-
On the convergence of the products of firmly nonexpansive maps
-
P. TSENG, On the convergence of the products of firmly nonexpansive maps, SIAM J. Optim., 2 (1992), pp. 425-434.
-
(1992)
SIAM J. Optim.
, vol.2
, pp. 425-434
-
-
Tseng, P.1
|