메뉴 건너뛰기




Volumn 24, Issue 6, 2008, Pages

A compressive Landweber iteration for solving ill-posed inverse problems

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTERIZED TOMOGRAPHY; DIAGNOSTIC RADIOGRAPHY; DIFFERENTIAL EQUATIONS; MATHEMATICAL OPERATORS;

EID: 62649111983     PISSN: 02665611     EISSN: 13616420     Source Type: Journal    
DOI: 10.1088/0266-5611/24/6/065013     Document Type: Article
Times cited : (16)

References (34)
  • 1
    • 34548224020 scopus 로고    scopus 로고
    • Anthoine S 2005 Different wavelet-based approaches for the separation of noisy and blurred mixtures of components. Application to astrophysical data PhD Thesis
    • (2005) PhD Thesis
    • Anthoine, S.1
  • 2
    • 28544447290 scopus 로고    scopus 로고
    • A Lepskij-type stopping rule for regularized newton methods
    • Bauer F and Hohage T 2005 A Lepskij-type stopping rule for regularized newton methods Inverse Problems 21 1975-91
    • (2005) Inverse Problems , vol.21 , Issue.6 , pp. 1975-1991
    • Bauer, F.1    Hohage, T.2
  • 3
    • 62649107593 scopus 로고    scopus 로고
    • Iterated soft shrinkage with adaptive operator evaluations
    • Bonesky T and Maass P 2008 Iterated soft shrinkage with adaptive operator evaluations J. Inverse Ill-Posed Problems at press
    • (2008) J. Inverse Ill-Posed Problems
    • Bonesky, T.1    Maass, P.2
  • 4
    • 41449098744 scopus 로고    scopus 로고
    • A generalized conditional gradient method and its connection to an iterative shrinkage method
    • Bredies K, Lorenz D A and Maass P 2005 A generalized conditional gradient method and its connection to an iterative shrinkage method Comput. Optim. Appl. at press (DOI:10.1007/s10589-007-9803-3)
    • (2005) Comput. Optim. Appl.
    • Bredies, K.1    Lorenz, D.A.2    Maass, P.3
  • 6
    • 0347937165 scopus 로고    scopus 로고
    • Adaptive wavelet methods: II. beyond the elliptic case
    • Cohen A, Dahmen W and DeVore R 2002 Adaptive wavelet methods: II. Beyond the elliptic case Found. Comput. Math. 2 203-45
    • (2002) Found. Comput. Math. , vol.2 , Issue.3 , pp. 203-245
    • Cohen, A.1    Dahmen, W.2    Devore, R.3
  • 7
    • 0035606214 scopus 로고    scopus 로고
    • Adaptive wavelet methods for elliptic operator equations: Convergence rates
    • Cohen A, Dahmen W and DeVore R 2001 Adaptive wavelet methods for elliptic operator equations: Convergence rates Math. Comput. 70 27-75
    • (2001) Math. Comput. , vol.70 , Issue.233 , pp. 27-75
    • Cohen, A.1    Dahmen, W.2    Devore, R.3
  • 9
    • 85011480386 scopus 로고    scopus 로고
    • Wavelet and multiscale methods for operator equations
    • Dahmen W 1997 Wavelet and multiscale methods for operator equations Acta Numerica vol 6 (Cambridge: Cambridge University Press) pp 55-228
    • (1997) Acta Numerica , vol.6 , pp. 55-228
    • Dahmen, W.1
  • 10
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • Daubechies I, Defrise M and DeMol C 2004 An iterative thresholding algorithm for linear inverse problems with a sparsity constraint Commun. Pure Appl. Math 57 1413-541
    • (2004) Commun. Pure Appl. Math , vol.57 , Issue.11 , pp. 1413-1541
    • Daubechies, I.1    Defrise, M.2    Demol, C.3
  • 11
    • 57349127864 scopus 로고    scopus 로고
    • Accelerated projected gradient methods for linear inverse problems with sparsity constraints
    • Daubechies I, Fornasier M and Loris I 2008 Accelerated projected gradient methods for linear inverse problems with sparsity constraints J. Fourier Anal. Appl. at press (DOI:10.2007/50041-008-9039-8)
    • (2008) J. Fourier Anal. Appl.
    • Daubechies, I.1    Fornasier, M.2    Loris, I.3
  • 13
    • 20144365032 scopus 로고    scopus 로고
    • Variational image restoration by means of wavelets: Simultaneous decomposition, deblurring and denoising
    • Daubechies I and Teschke G 2005 Variational image restoration by means of wavelets: simultaneous decomposition, deblurring and denoising Appl. Comput. Harmon. Anal. 19 1-16
    • (2005) Appl. Comput. Harmon. Anal. , vol.19 , Issue.1 , pp. 1-16
    • Daubechies, I.1    Teschke, G.2
  • 14
    • 78649765600 scopus 로고    scopus 로고
    • Iteratively solving linear inverse problems with general convex constraints
    • Daubechies I, Teschke G and Vese L 2007 Iteratively solving linear inverse problems with general convex constraints Inverse Problems Imaging 1 29-46
    • (2007) Inverse Problems Imaging , vol.1 , pp. 29-46
    • Daubechies, I.1    Teschke, G.2    Vese, L.3
  • 16
    • 0345179899 scopus 로고
    • A note on stopping rules for iterative methods and filtered svd
    • Defrise M and de Mol C 1987 A note on stopping rules for iterative methods and filtered svd Inverse Problems: An Interdisciplinary Study ed P C Sabatier (New York: Academic) pp 261-8
    • (1987) Inverse Problems: An Interdisciplinary Study , pp. 261-268
    • Defrise, M.1    De Mol, C.2
  • 18
    • 36749084177 scopus 로고    scopus 로고
    • Domain decomposition methods for linear inverse problems with sparsity constraints
    • Fornasier M 2007 Domain decomposition methods for linear inverse problems with sparsity constraints Inverse Problems 23 2505
    • (2007) Inverse Problems , vol.23 , Issue.6 , pp. 2505
    • Fornasier, M.1
  • 19
    • 84966214028 scopus 로고
    • An a posteriori parameter choice for ordinary and iterated tikhonov regularization of ill-posed problems leading to optimal convergence rates
    • Gfrerer H 1987 An a posteriori parameter choice for ordinary and iterated tikhonov regularization of ill-posed problems leading to optimal convergence rates Math. Comput. 49 507-22
    • (1987) Math. Comput. , vol.49 , Issue.180 , pp. 507-522
    • Gfrerer, H.1
  • 21
    • 33744504745 scopus 로고    scopus 로고
    • The lepskii principle revisited
    • Mathe P 2005 The lepskii principle revisited Inverse Problems 21 L11-5
    • (2005) Inverse Problems , vol.21
    • Mathe, P.1
  • 22
    • 0000739264 scopus 로고
    • On the solution of functional equations by the method of regularization
    • Morozov V A 1966 On the solution of functional equations by the method of regularization Sov. Math.-Dokl. 7 414-7
    • (1966) Sov. Math.-Dokl. , vol.7 , pp. 414-417
    • Morozov, V.A.1
  • 24
    • 78650359235 scopus 로고    scopus 로고
    • Raasch T 2007 Adaptive wavelet and frame schemes for elliptic and parabolic equations PhD Thesis
    • (2007) PhD Thesis
    • Raasch, T.1
  • 25
    • 0032687625 scopus 로고    scopus 로고
    • A modified Landweber-method for inverse problems
    • Ramlau R 1999 A modified Landweber-method for inverse problems J. Numer. Funct. Anal. Optim. 20 79-98
    • (1999) J. Numer. Funct. Anal. Optim. , vol.20 , Issue.1 , pp. 79-98
    • Ramlau, R.1
  • 26
    • 33744540809 scopus 로고    scopus 로고
    • Regularization of Sobolev embedding operators and applications: Part I. Fourier and wavelet based Methods
    • Ramlau R and Teschke G 2004 Regularization of Sobolev embedding operators and applications: Part I. Fourier and wavelet based Methods Sampling Theory Signal Image Process. 3 175-96
    • (2004) Sampling Theory Signal Image Process. , vol.3 , pp. 175-196
    • Ramlau, R.1    Teschke, G.2
  • 27
    • 24944431577 scopus 로고    scopus 로고
    • Regularization of Sobolev embedding operators and applications: Part II. Data driven regularization and applications
    • Ramlau R and Teschke G 2004 Regularization of Sobolev embedding operators and applications: Part II. Data driven regularization and applications Sampling Theory Signal Image Process. 3 225-46
    • (2004) Sampling Theory Signal Image Process. , vol.3 , pp. 225-246
    • Ramlau, R.1    Teschke, G.2
  • 28
    • 33748848713 scopus 로고    scopus 로고
    • A projection iteration for nonlinear operator equations with sparsity constraints
    • Ramlau R and Teschke G 2006 A projection iteration for nonlinear operator equations with sparsity constraints Numer. Math. 104 177-203
    • (2006) Numer. Math. , vol.104 , Issue.2 , pp. 177-203
    • Ramlau, R.1    Teschke, G.2
  • 29
    • 3142699133 scopus 로고    scopus 로고
    • Adaptive solution of operator equations using wavelet frames
    • Stevenson R 2003 Adaptive solution of operator equations using wavelet frames SIAM J. Numer. Anal. 1074-100
    • (2003) SIAM J. Numer. Anal. , vol.41 , Issue.3 , pp. 1074-1100
    • Stevenson, R.1
  • 30
    • 4644299592 scopus 로고    scopus 로고
    • On the compressibility of operators in wavelet coordinates
    • Stevenson R 2004 On the compressibility of operators in wavelet coordinates SIAM J. Math. Anal. 35 1110-32
    • (2004) SIAM J. Math. Anal. , vol.35 , Issue.5 , pp. 1110-1132
    • Stevenson, R.1
  • 31
    • 0013298158 scopus 로고    scopus 로고
    • The use of monotonicity for choosing the regularization parameter in ill -posed problems
    • Tautenhahn U and Hämarik 1999 The use of monotonicity for choosing the regularization parameter in ill -posed problems Inverse Problems 15 1487-505
    • (1999) Inverse Problems , vol.15 , Issue.6 , pp. 1487-1505
    • Tautenhahn, U.1    Hämarik2
  • 32
    • 33751004125 scopus 로고    scopus 로고
    • Multi-Frame representations in linear inverse problems with mixed multi-constraints
    • Teschke G 2007 Multi-Frame representations in linear inverse problems with mixed multi-constraints Appl. Comput. Harmon. Anal. 22 43-60
    • (2007) Appl. Comput. Harmon. Anal. , vol.22 , Issue.1 , pp. 43-60
    • Teschke, G.1
  • 33
    • 0011481293 scopus 로고
    • The principle of the residual for a class of regularization methods
    • Vainikko G M 1982 The principle of the residual for a class of regularization methods USSR Comput. Math. Math. Phys. 22 1-19
    • (1982) USSR Comput. Math. Math. Phys. , vol.22 , Issue.3 , pp. 1-19
    • Vainikko, G.M.1
  • 34
    • 62649117680 scopus 로고    scopus 로고
    • Zhariy M 2008 Adaptive frame based regularization methods for solving linear ill-posed inverse problems PhD Thesis
    • (2008) PhD Thesis
    • Zhariy, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.