-
1
-
-
34548224020
-
-
Anthoine S 2005 Different wavelet-based approaches for the separation of noisy and blurred mixtures of components. Application to astrophysical data PhD Thesis
-
(2005)
PhD Thesis
-
-
Anthoine, S.1
-
2
-
-
28544447290
-
A Lepskij-type stopping rule for regularized newton methods
-
Bauer F and Hohage T 2005 A Lepskij-type stopping rule for regularized newton methods Inverse Problems 21 1975-91
-
(2005)
Inverse Problems
, vol.21
, Issue.6
, pp. 1975-1991
-
-
Bauer, F.1
Hohage, T.2
-
3
-
-
62649107593
-
Iterated soft shrinkage with adaptive operator evaluations
-
Bonesky T and Maass P 2008 Iterated soft shrinkage with adaptive operator evaluations J. Inverse Ill-Posed Problems at press
-
(2008)
J. Inverse Ill-Posed Problems
-
-
Bonesky, T.1
Maass, P.2
-
4
-
-
41449098744
-
A generalized conditional gradient method and its connection to an iterative shrinkage method
-
Bredies K, Lorenz D A and Maass P 2005 A generalized conditional gradient method and its connection to an iterative shrinkage method Comput. Optim. Appl. at press (DOI:10.1007/s10589-007-9803-3)
-
(2005)
Comput. Optim. Appl.
-
-
Bredies, K.1
Lorenz, D.A.2
Maass, P.3
-
6
-
-
0347937165
-
Adaptive wavelet methods: II. beyond the elliptic case
-
Cohen A, Dahmen W and DeVore R 2002 Adaptive wavelet methods: II. Beyond the elliptic case Found. Comput. Math. 2 203-45
-
(2002)
Found. Comput. Math.
, vol.2
, Issue.3
, pp. 203-245
-
-
Cohen, A.1
Dahmen, W.2
Devore, R.3
-
7
-
-
0035606214
-
Adaptive wavelet methods for elliptic operator equations: Convergence rates
-
Cohen A, Dahmen W and DeVore R 2001 Adaptive wavelet methods for elliptic operator equations: Convergence rates Math. Comput. 70 27-75
-
(2001)
Math. Comput.
, vol.70
, Issue.233
, pp. 27-75
-
-
Cohen, A.1
Dahmen, W.2
Devore, R.3
-
9
-
-
85011480386
-
Wavelet and multiscale methods for operator equations
-
Dahmen W 1997 Wavelet and multiscale methods for operator equations Acta Numerica vol 6 (Cambridge: Cambridge University Press) pp 55-228
-
(1997)
Acta Numerica
, vol.6
, pp. 55-228
-
-
Dahmen, W.1
-
10
-
-
7044231546
-
An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
-
Daubechies I, Defrise M and DeMol C 2004 An iterative thresholding algorithm for linear inverse problems with a sparsity constraint Commun. Pure Appl. Math 57 1413-541
-
(2004)
Commun. Pure Appl. Math
, vol.57
, Issue.11
, pp. 1413-1541
-
-
Daubechies, I.1
Defrise, M.2
Demol, C.3
-
11
-
-
57349127864
-
Accelerated projected gradient methods for linear inverse problems with sparsity constraints
-
Daubechies I, Fornasier M and Loris I 2008 Accelerated projected gradient methods for linear inverse problems with sparsity constraints J. Fourier Anal. Appl. at press (DOI:10.2007/50041-008-9039-8)
-
(2008)
J. Fourier Anal. Appl.
-
-
Daubechies, I.1
Fornasier, M.2
Loris, I.3
-
13
-
-
20144365032
-
Variational image restoration by means of wavelets: Simultaneous decomposition, deblurring and denoising
-
Daubechies I and Teschke G 2005 Variational image restoration by means of wavelets: simultaneous decomposition, deblurring and denoising Appl. Comput. Harmon. Anal. 19 1-16
-
(2005)
Appl. Comput. Harmon. Anal.
, vol.19
, Issue.1
, pp. 1-16
-
-
Daubechies, I.1
Teschke, G.2
-
14
-
-
78649765600
-
Iteratively solving linear inverse problems with general convex constraints
-
Daubechies I, Teschke G and Vese L 2007 Iteratively solving linear inverse problems with general convex constraints Inverse Problems Imaging 1 29-46
-
(2007)
Inverse Problems Imaging
, vol.1
, pp. 29-46
-
-
Daubechies, I.1
Teschke, G.2
Vese, L.3
-
16
-
-
0345179899
-
A note on stopping rules for iterative methods and filtered svd
-
Defrise M and de Mol C 1987 A note on stopping rules for iterative methods and filtered svd Inverse Problems: An Interdisciplinary Study ed P C Sabatier (New York: Academic) pp 261-8
-
(1987)
Inverse Problems: An Interdisciplinary Study
, pp. 261-268
-
-
Defrise, M.1
De Mol, C.2
-
18
-
-
36749084177
-
Domain decomposition methods for linear inverse problems with sparsity constraints
-
Fornasier M 2007 Domain decomposition methods for linear inverse problems with sparsity constraints Inverse Problems 23 2505
-
(2007)
Inverse Problems
, vol.23
, Issue.6
, pp. 2505
-
-
Fornasier, M.1
-
19
-
-
84966214028
-
An a posteriori parameter choice for ordinary and iterated tikhonov regularization of ill-posed problems leading to optimal convergence rates
-
Gfrerer H 1987 An a posteriori parameter choice for ordinary and iterated tikhonov regularization of ill-posed problems leading to optimal convergence rates Math. Comput. 49 507-22
-
(1987)
Math. Comput.
, vol.49
, Issue.180
, pp. 507-522
-
-
Gfrerer, H.1
-
21
-
-
33744504745
-
The lepskii principle revisited
-
Mathe P 2005 The lepskii principle revisited Inverse Problems 21 L11-5
-
(2005)
Inverse Problems
, vol.21
-
-
Mathe, P.1
-
22
-
-
0000739264
-
On the solution of functional equations by the method of regularization
-
Morozov V A 1966 On the solution of functional equations by the method of regularization Sov. Math.-Dokl. 7 414-7
-
(1966)
Sov. Math.-Dokl.
, vol.7
, pp. 414-417
-
-
Morozov, V.A.1
-
24
-
-
78650359235
-
-
Raasch T 2007 Adaptive wavelet and frame schemes for elliptic and parabolic equations PhD Thesis
-
(2007)
PhD Thesis
-
-
Raasch, T.1
-
25
-
-
0032687625
-
A modified Landweber-method for inverse problems
-
Ramlau R 1999 A modified Landweber-method for inverse problems J. Numer. Funct. Anal. Optim. 20 79-98
-
(1999)
J. Numer. Funct. Anal. Optim.
, vol.20
, Issue.1
, pp. 79-98
-
-
Ramlau, R.1
-
26
-
-
33744540809
-
Regularization of Sobolev embedding operators and applications: Part I. Fourier and wavelet based Methods
-
Ramlau R and Teschke G 2004 Regularization of Sobolev embedding operators and applications: Part I. Fourier and wavelet based Methods Sampling Theory Signal Image Process. 3 175-96
-
(2004)
Sampling Theory Signal Image Process.
, vol.3
, pp. 175-196
-
-
Ramlau, R.1
Teschke, G.2
-
27
-
-
24944431577
-
Regularization of Sobolev embedding operators and applications: Part II. Data driven regularization and applications
-
Ramlau R and Teschke G 2004 Regularization of Sobolev embedding operators and applications: Part II. Data driven regularization and applications Sampling Theory Signal Image Process. 3 225-46
-
(2004)
Sampling Theory Signal Image Process.
, vol.3
, pp. 225-246
-
-
Ramlau, R.1
Teschke, G.2
-
28
-
-
33748848713
-
A projection iteration for nonlinear operator equations with sparsity constraints
-
Ramlau R and Teschke G 2006 A projection iteration for nonlinear operator equations with sparsity constraints Numer. Math. 104 177-203
-
(2006)
Numer. Math.
, vol.104
, Issue.2
, pp. 177-203
-
-
Ramlau, R.1
Teschke, G.2
-
29
-
-
3142699133
-
Adaptive solution of operator equations using wavelet frames
-
Stevenson R 2003 Adaptive solution of operator equations using wavelet frames SIAM J. Numer. Anal. 1074-100
-
(2003)
SIAM J. Numer. Anal.
, vol.41
, Issue.3
, pp. 1074-1100
-
-
Stevenson, R.1
-
30
-
-
4644299592
-
On the compressibility of operators in wavelet coordinates
-
Stevenson R 2004 On the compressibility of operators in wavelet coordinates SIAM J. Math. Anal. 35 1110-32
-
(2004)
SIAM J. Math. Anal.
, vol.35
, Issue.5
, pp. 1110-1132
-
-
Stevenson, R.1
-
31
-
-
0013298158
-
The use of monotonicity for choosing the regularization parameter in ill -posed problems
-
Tautenhahn U and Hämarik 1999 The use of monotonicity for choosing the regularization parameter in ill -posed problems Inverse Problems 15 1487-505
-
(1999)
Inverse Problems
, vol.15
, Issue.6
, pp. 1487-1505
-
-
Tautenhahn, U.1
Hämarik2
-
32
-
-
33751004125
-
Multi-Frame representations in linear inverse problems with mixed multi-constraints
-
Teschke G 2007 Multi-Frame representations in linear inverse problems with mixed multi-constraints Appl. Comput. Harmon. Anal. 22 43-60
-
(2007)
Appl. Comput. Harmon. Anal.
, vol.22
, Issue.1
, pp. 43-60
-
-
Teschke, G.1
-
33
-
-
0011481293
-
The principle of the residual for a class of regularization methods
-
Vainikko G M 1982 The principle of the residual for a class of regularization methods USSR Comput. Math. Math. Phys. 22 1-19
-
(1982)
USSR Comput. Math. Math. Phys.
, vol.22
, Issue.3
, pp. 1-19
-
-
Vainikko, G.M.1
-
34
-
-
62649117680
-
-
Zhariy M 2008 Adaptive frame based regularization methods for solving linear ill-posed inverse problems PhD Thesis
-
(2008)
PhD Thesis
-
-
Zhariy, M.1
|