-
1
-
-
0344443175
-
-
0028-0836 10.1038/nature02135.
-
E. D. Sloan, Nature (London) 0028-0836 10.1038/nature02135 426, 353 (2003).
-
(2003)
Nature (London)
, vol.426
, pp. 353
-
-
Sloan, E.D.1
-
3
-
-
5644293043
-
-
0036-8075 10.1126/science.1102076.
-
L. J. Florusse, C. J. Peters, J. Schoonman, K. C. Hester, C. A. Koh, S. F. Dec, K. N. Marsh, and E. D. Sloan, Science 0036-8075 10.1126/science.1102076 306, 469 (2004).
-
(2004)
Science
, vol.306
, pp. 469
-
-
Florusse, L.J.1
Peters, C.J.2
Schoonman, J.3
Hester, K.C.4
Koh, C.A.5
Dec, S.F.6
Marsh, K.N.7
Sloan, E.D.8
-
4
-
-
17644397538
-
-
0028-0836 10.1038/nature03457.
-
H. Lee, J. W. Lee, D. Y. Kim, J. Park, Y. T. Seo, H. Zeng, I. L. Moudrakovski, C. I. Ratcliffe, and J. A. Ripmeester, Nature (London) 0028-0836 10.1038/nature03457 434, 743 (2005).
-
(2005)
Nature (London)
, vol.434
, pp. 743
-
-
Lee, H.1
Lee, J.W.2
Kim, D.Y.3
Park, J.4
Seo, Y.T.5
Zeng, H.6
Moudrakovski, I.L.7
Ratcliffe, C.I.8
Ripmeester, J.A.9
-
7
-
-
26644449691
-
-
0022-4766
-
L. S. Aladko, Yu. A. Dyadin, T. V. Rodionova, and I. S. Terekhova, J. Struct. Chem. 43, 990 (2002). 0022-4766
-
(2002)
J. Struct. Chem.
, vol.43
, pp. 990
-
-
Aladko, L.S.1
Dyadin, Yu.A.2
Rodionova, T.V.3
Terekhova, I.S.4
-
10
-
-
33750932955
-
-
0009-2509 10.1016/j.ces.2006.09.039.
-
S. Hashimoto, S. Murayama, T. Sugahara, H. Sato, and K. Ohgaki, Chem. Eng. Sci. 0009-2509 10.1016/j.ces.2006.09.039 61, 7884 (2006).
-
(2006)
Chem. Eng. Sci.
, vol.61
, pp. 7884
-
-
Hashimoto, S.1
Murayama, S.2
Sugahara, T.3
Sato, H.4
Ohgaki, K.5
-
11
-
-
20144372246
-
-
J. Lipkowski, V. Yu. Komarov, T. V. Rodionova, Y. A. Dyadin, and L. S. Aladko, J. Supramol. Chem. 2, 435 (2002).
-
(2002)
J. Supramol. Chem.
, vol.2
, pp. 435
-
-
Lipkowski, J.1
Komarov, V.Yu.2
Rodionova, T.V.3
Dyadin, Y.A.4
Aladko, L.S.5
-
12
-
-
35748982897
-
-
0009-2665 10.1021/cr050183d.
-
V. V. Struzhkin, B. Militzer, W. L. Mao, H. -K. Mao, and R. J. Hemley, Chem. Rev. (Washington, D.C.) 0009-2665 10.1021/cr050183d 107, 4133 (2007).
-
(2007)
Chem. Rev. (Washington, D.C.)
, vol.107
, pp. 4133
-
-
Struzhkin, V.V.1
Militzer, B.2
Mao, W.L.3
Mao, H.-K.4
Hemley, R.J.5
-
13
-
-
34250116057
-
-
0022-4766
-
L. A. Gaponenko, S. F. Solodovnikov, Y. A. Dyadin, L. S. Aladko, and T. M. Polyanskaya, J. Struct. Chem. 25, 157 (1984). 0022-4766
-
(1984)
J. Struct. Chem.
, vol.25
, pp. 157
-
-
Gaponenko, L.A.1
Solodovnikov, S.F.2
Dyadin, Y.A.3
Aladko, L.S.4
Polyanskaya, T.M.5
-
14
-
-
30944467771
-
-
0108-2701
-
W. Shimada, M. Shiro, H. Kondo, S. Takeya, H. Oyama, T. Ebinuma, and H. Narita, Acta Crystallogr. C 61, o65 (2005). 0108-2701
-
(2005)
Acta Crystallogr. C
, vol.61
, pp. 65
-
-
Shimada, W.1
Shiro, M.2
Kondo, H.3
Takeya, S.4
Oyama, H.5
Ebinuma, T.6
Narita, H.7
-
15
-
-
0344628725
-
-
1463-9076 10.1039/b212472f.
-
T. M. Kirschgen, M. D. Zeidler, B. Geil, and F. Fujara, Phys. Chem. Chem. Phys. 1463-9076 10.1039/b212472f 5, 5247 (2003).
-
(2003)
Phys. Chem. Chem. Phys.
, vol.5
, pp. 5247
-
-
Kirschgen, T.M.1
Zeidler, M.D.2
Geil, B.3
Fujara, F.4
-
16
-
-
33749159474
-
-
0163-1829 10.1103/PhysRevB.72.014304.
-
B. Geil, T. M. Kirschgen, and F. Fujara, Phys. Rev. B 0163-1829 10.1103/PhysRevB.72.014304 72, 014304 (2005).
-
(2005)
Phys. Rev. B
, vol.72
, pp. 014304
-
-
Geil, B.1
Kirschgen, T.M.2
Fujara, F.3
-
19
-
-
33646352161
-
-
0378-3812
-
H. Oyama, W. Shimada, T. Ebinuma, Y. Kamata, S. Takeya, T. Uchida, J. Nagao, and H. Narita, Fluid Phase Equilib. 234, 131 (2005). 0378-3812
-
(2005)
Fluid Phase Equilib.
, vol.234
, pp. 131
-
-
Oyama, H.1
Shimada, W.2
Ebinuma, T.3
Kamata, Y.4
Takeya, S.5
Uchida, T.6
Nagao, J.7
Narita, H.8
-
22
-
-
0009656861
-
-
0021-9606 10.1063/1.456933.
-
R. Böhmer, J. Chem. Phys. 0021-9606 10.1063/1.456933 91, 3111 (1989).
-
(1989)
J. Chem. Phys.
, vol.91
, pp. 3111
-
-
Böhmer, R.1
-
23
-
-
0001666707
-
-
1090-7807 10.1006/jmre.1998.9999.
-
G. Hinze, R. Böhmer, G. Diezemann, and H. Sillescu, J. Magn. Reson. 1090-7807 10.1006/jmre.1998.9999 131, 218 (1998).
-
(1998)
J. Magn. Reson.
, vol.131
, pp. 218
-
-
Hinze, G.1
Böhmer, R.2
Diezemann, G.3
Sillescu, H.4
-
24
-
-
0002781313
-
-
1064-1858 10.1006/jmra.1995.1149, () (We used solid-echo delays Δ12 =5 μs and Δ34 =15 μs.).
-
D. Schaefer, J. Leisen, and H. W. Spiess, J. Magn. Reson., Ser. A 1064-1858 10.1006/jmra.1995.1149 115, 60 (1995) (We used solid-echo delays Δ12 =5 μs and Δ34 =15 μs.).
-
(1995)
J. Magn. Reson., Ser. A
, vol.115
, pp. 60
-
-
Schaefer, D.1
Leisen, J.2
Spiess, H.W.3
-
25
-
-
0000629913
-
-
0021-9606 10.1063/1.458354.
-
E. Rössler, M. Taupitz, K. Börner, M. Schulz, and H. -M. Vieth, J. Chem. Phys. 0021-9606 10.1063/1.458354 92, 5847 (1990).
-
(1990)
J. Chem. Phys.
, vol.92
, pp. 5847
-
-
Rössler, E.1
Taupitz, M.2
Börner, K.3
Schulz, M.4
Vieth, H.-M.5
-
26
-
-
0000938413
-
-
0301-0104 10.1016/0301-0104(74)85062-7, ();, J. Magn. Reson. 39, 217 (1980). 1090-7807
-
H. W. Spiess, Chem. Phys. 0301-0104 10.1016/0301-0104(74)85062-7 6, 217 (1974); U. Pschorn and H. W. Spiess, J. Magn. Reson. 39, 217 (1980). 1090-7807
-
(1974)
Chem. Phys.
, vol.6
, pp. 217
-
-
Spiess, H.W.1
Pschorn, U.2
Spiess, H.W.3
-
27
-
-
0035913882
-
-
0079-6505 10.1016/S0079-6565(01)00036-X.
-
R. Böhmer, G. Diezemann, G. Hinze, and E. Rössler, Prog. Nucl. Magn. Reson. Spectrosc. 0079-6505 10.1016/S0079-6565(01)00036-X 39, 191 (2001).
-
(2001)
Prog. Nucl. Magn. Reson. Spectrosc.
, vol.39
, pp. 191
-
-
Böhmer, R.1
Diezemann, G.2
Hinze, G.3
Rössler, E.4
-
29
-
-
0000769093
-
-
1089-5639 10.1021/jp973461o.
-
M. Vogel and E. Rössler, J. Phys. Chem. A 1089-5639 10.1021/jp973461o 102, 2102 (1998).
-
(1998)
J. Phys. Chem. A
, vol.102
, pp. 2102
-
-
Vogel, M.1
Rössler, E.2
-
31
-
-
0003561703
-
-
in, edited by P. Diehl, E. Fluck, H. Günther, P. Kosfeld, and J. Seelig (Springer, Berlin), Vol..
-
G. Fleischer and F. Fujara, in NMR-Basic Principles and Progress, edited by, P. Diehl, E. Fluck, H. Günther, P. Kosfeld, and, J. Seelig, (Springer, Berlin, 1994), Vol. 30.
-
(1994)
NMR-Basic Principles and Progress
, vol.30
-
-
Fleischer, G.1
Fujara, F.2
-
33
-
-
62549153222
-
-
For the sII structure Z (tp) (Ref.) is only marginally different from that for isotropic motion.
-
For the sII structure Z (tp) (Ref.) is only marginally different from that for isotropic motion.
-
-
-
-
35
-
-
0000854512
-
-
1063-651X 10.1103/PhysRevE.56.730.
-
A. Heuer, Phys. Rev. E 1063-651X 10.1103/PhysRevE.56.730 56, 730 (1997).
-
(1997)
Phys. Rev. e
, vol.56
, pp. 730
-
-
Heuer, A.1
-
36
-
-
62549155868
-
-
For more detailed descriptions and other applications of four-time stimulated-echo functions the reader is referred to, e.g., Refs. and.
-
For more detailed descriptions and other applications of four-time stimulated-echo functions the reader is referred to, e.g., Refs. and.
-
-
-
-
37
-
-
0038404375
-
-
0022-3093
-
R. Böhmer, R. V. Chamberlin, G. Diezemann, B. Geil, A. Heuer, G. Hinze, S. C. Kuebler, R. Richert, B. Schiener, H. Sillescu, H. W. Spiess, U. Tracht, and M. Wilhelm, J. Non-Cryst. Solids 235-237, 1 (1998). 0022-3093
-
(1998)
J. Non-Cryst. Solids
, vol.235-237
, pp. 1
-
-
Böhmer, R.1
Chamberlin, R.V.2
Diezemann, G.3
Geil, B.4
Heuer, A.5
Hinze, G.6
Kuebler, S.C.7
Richert, R.8
Schiener, B.9
Sillescu, H.10
Spiess, H.W.11
Tracht, U.12
Wilhelm, M.13
-
38
-
-
62549162696
-
-
Despite their similar appearance the F4 (tm2) and the G4 (tm3) functions differ in a number of respects. In physical terms the variation in different mixing times implies that rather different aspects of the dynamics of the water molecules are probed. This is briefly explained in the text for simple examples, but dealt with more fully, e.g., in Refs. and. While F4 the evolution frequencies ω1, ω2, ω3, and ω4 will in general all differ for a given ensemble of spins. In the present implementation of G4 the frequencies ω2 and ω3 are identical owing to the very short tm2, c.f. the caption Fig.. The fact that in Eq. a term cos [(ω3 - ω4) t] appears which for G4 is replaced by cos (ω3 tp) cos (ω4 tp) may be considered as a technical detail, which however is important because it ensures that these functions can be properly normalized using the (unavoidable but independently measured) longitudinal relaxation of magnetization.
-
Despite their similar appearance the F4 (tm2) and the G4 (tm3) functions differ in a number of respects. In physical terms the variation in different mixing times implies that rather different aspects of the dynamics of the water molecules are probed. This is briefly explained in the text for simple examples, but dealt with more fully, e.g., in Refs. and. While F4 the evolution frequencies ω1, ω2, ω3, and ω4 will in general all differ for a given ensemble of spins. In the present implementation of G4 the frequencies ω2 and ω3 are identical owing to the very short tm2, c.f. the caption Fig.. The fact that in Eq. a term cos [(ω3-ω4) tp] appears which for G4 is replaced by cos (ω3 tp) cos (ω4 tp) may be considered as a technical detail, which however is important because it ensures that these functions can be properly normalized using the (unavoidable but independently measured) longitudinal relaxation of magnetization.
-
-
-
-
39
-
-
0346504249
-
-
0031-9007 10.1103/PhysRevLett.91.235504.
-
M. Winterlich, G. Diezemann, H. Zimmermann, and R. Böhmer, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.91.235504 91, 235504 (2003).
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 235504
-
-
Winterlich, M.1
Diezemann, G.2
Zimmermann, H.3
Böhmer, R.4
-
40
-
-
33645548420
-
-
0021-9606 10.1063/1.2013254.
-
M. Winterlich, R. Böhmer, G. Diezemann, and H. Zimmermann, J. Chem. Phys. 0021-9606 10.1063/1.2013254 123, 094504 (2005).
-
(2005)
J. Chem. Phys.
, vol.123
, pp. 094504
-
-
Winterlich, M.1
Böhmer, R.2
Diezemann, G.3
Zimmermann, H.4
-
41
-
-
2142655025
-
-
0163-1829 10.1103/PhysRevB.69.094302.
-
M. Vogel, C. Brinkmann, H. Eckert, and A. Heuer, Phys. Rev. B 0163-1829 10.1103/PhysRevB.69.094302 69, 094302 (2004).
-
(2004)
Phys. Rev. B
, vol.69
, pp. 094302
-
-
Vogel, M.1
Brinkmann, C.2
Eckert, H.3
Heuer, A.4
-
43
-
-
33750563860
-
-
1063-651X 10.1103/PhysRevE.74.041504, () (This estimate is based on the existence of a quasi-isotropic process for which tetrahedral reorientations are an example.).
-
B. Geil, G. Diezemann, and R. Böhmer, Phys. Rev. E 1063-651X 10.1103/PhysRevE.74.041504 74, 041504 (2006) (This estimate is based on the existence of a quasi-isotropic process for which tetrahedral reorientations are an example.).
-
(2006)
Phys. Rev. e
, vol.74
, pp. 041504
-
-
Geil, B.1
Diezemann, G.2
Böhmer, R.3
-
44
-
-
0037066860
-
-
1520-6106
-
M. Bach-Verǵs, S. J. Kitchin, K. D. M. Harris, M. Zugic, and C. A. Koh, J. Phys. Chem. B 105, 2699 (2001). 1520-6106
-
(2001)
J. Phys. Chem. B
, vol.105
, pp. 2699
-
-
Bach-Verǵs, M.1
Kitchin, S.J.2
Harris, K.D.M.3
Zugic, M.4
Koh, C.A.5
-
45
-
-
33947087692
-
-
0022-3654 10.1021/j100643a009.
-
S. R. Gough, D. W. Davidson, R. E. Hawkins, and B. Morris, J. Phys. Chem. 0022-3654 10.1021/j100643a009 77, 2969 (1973).
-
(1973)
J. Phys. Chem.
, vol.77
, pp. 2969
-
-
Gough, S.R.1
Davidson, D.W.2
Hawkins, R.E.3
Morris, B.4
-
46
-
-
0037855020
-
-
The situation regarding the translational motion of the H2 O molecules in THF clathrate hydrate seems less clear. From a proton NMR investigation an energy barrier of Etrans ≈50 kJ/mol was estimated [, ()], while in Ref. a value of 12 kJ/mol was given. For the translational water motion in ice- Ih a value of 50 kJ/mol is reported in Ref.. 0022-3654
-
The situation regarding the translational motion of the H2 O molecules in THF clathrate hydrate seems less clear. From a proton NMR investigation an energy barrier of Etrans ≈50 kJ/mol was estimated [S. K. Garg, D. W. Davidson, and J. A. Ripmeester, J. Magn. Reson. 15, 295 (1974)], while in Ref. a value of 12 kJ/mol was given. For the translational water motion in ice- Ih a value of 50 kJ/mol is reported in Ref.. 0022-3654
-
(1974)
J. Magn. Reson.
, vol.15
, pp. 295
-
-
Garg, S.K.1
Davidson, D.W.2
Ripmeester, J.A.3
-
47
-
-
8344268627
-
-
0021-9606 10.1063/1.2217945, ();, J. Chem. Phys. 0021-9606 10.1063/1.2217945 125, 054905 (2006).
-
P. M. Cereghetti, R. Kind, and J. S. Higgins, J. Chem. Phys. 0021-9606 10.1063/1.2217945 121, 8068 (2004); M. Vogel and T. Torbrügge, J. Chem. Phys. 0021-9606 10.1063/1.2217945 125, 054905 (2006).
-
(2004)
J. Chem. Phys.
, vol.121
, pp. 8068
-
-
Cereghetti, P.M.1
Kind, R.2
Higgins, J.S.3
Vogel, M.4
Torbrügge, T.5
-
50
-
-
62549132610
-
-
To test this conjecture we performed preliminary C 13 line shape measurements (not shown). So far, we find no indication of significant line shape changes in the temperature range in which the deuteron spin-lattice relaxation turns from exponential to nonexponential.
-
To test this conjecture we performed preliminary C 13 line shape measurements (not shown). So far, we find no indication of significant line shape changes in the temperature range in which the deuteron spin-lattice relaxation turns from exponential to nonexponential.
-
-
-
-
51
-
-
0000902444
-
-
This is the value for TBAF clathrate hydrate, see Table IV of, in, edited by F. Franks (Plenum, New York, London), Vol.
-
This is the value for TBAF clathrate hydrate, see Table IV of D. W. Davidson, in Water-A Comprehensive Treatise, edited by, F. Franks, (Plenum, New York, London, 1973), Vol. 2, pp. 115-234.
-
(1973)
Water-A Comprehensive Treatise
, vol.2
, pp. 115-234
-
-
Davidson, D.W.1
-
52
-
-
17744412209
-
-
0031-9007 10.1103/PhysRevLett.83.4337.
-
R. Richert and R. Böhmer, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.83.4337 83, 4337 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.83
, pp. 4337
-
-
Richert, R.1
Böhmer, R.2
|