메뉴 건너뛰기




Volumn 42, Issue 2, 2009, Pages 251-261

Bayesian clustering of flow cytometry data for the diagnosis of B-Chronic Lymphocytic Leukemia

Author keywords

B CLL; Bayesian clustering; Flow cytometry

Indexed keywords

B-CLL; BAYESIAN CLUSTERING; BAYESIAN METHODOLOGIES; BLOOD CELLS; CHRONIC LYMPHOCYTIC LEUKEMIAS; CLINICAL DECISION SUPPORTS; DATA ANALYSIS; DATA CLUSTERING; DATA-DRIVEN; DISTANCE-BASED; GOLD STANDARDS; OPTIMAL CLUSTERING; PRIOR INFORMATIONS; STATISTICAL LEARNING METHODS;

EID: 62049083064     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2008.11.003     Document Type: Article
Times cited : (18)

References (19)
  • 2
    • 0033884049 scopus 로고    scopus 로고
    • Flow cytometry: principles and clinical applications in hematology
    • Brown M., and Wittwer C.T. Flow cytometry: principles and clinical applications in hematology. Clin Chem 46 (2000) 1221-1229
    • (2000) Clin Chem , vol.46 , pp. 1221-1229
    • Brown, M.1    Wittwer, C.T.2
  • 3
    • 0034655431 scopus 로고    scopus 로고
    • Automated analysis in flow cytometry
    • Cualing H. Automated analysis in flow cytometry. Cytometry 42 2 (2000) 110-113
    • (2000) Cytometry , vol.42 , Issue.2 , pp. 110-113
    • Cualing, H.1
  • 4
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • Xu R., and Wunsch D. Survey of clustering algorithms. IEEE Trans Neural Netw 16 (2005) 645-678
    • (2005) IEEE Trans Neural Netw , vol.16 , pp. 645-678
    • Xu, R.1    Wunsch, D.2
  • 5
    • 0035397276 scopus 로고    scopus 로고
    • Pattern recognition in flow cytometry
    • Boddy L., Wilkins M., and Morris C. Pattern recognition in flow cytometry. Cytometry 44 3 (2001) 195-209
    • (2001) Cytometry , vol.44 , Issue.3 , pp. 195-209
    • Boddy, L.1    Wilkins, M.2    Morris, C.3
  • 6
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis and density estimation
    • Fraley C., and Raftery A. Model-based clustering, discriminant analysis and density estimation. J Am Stat Assoc 97 (2002) 611-631
    • (2002) J Am Stat Assoc , vol.97 , pp. 611-631
    • Fraley, C.1    Raftery, A.2
  • 7
    • 0036100113 scopus 로고    scopus 로고
    • Context-specific Bayesian clustering for gene expression data
    • Barash Y., and Friedman N. Context-specific Bayesian clustering for gene expression data. J Comput Biol 9 (2002) 169-191
    • (2002) J Comput Biol , vol.9 , pp. 169-191
    • Barash, Y.1    Friedman, N.2
  • 8
    • 0022262848 scopus 로고
    • Automatic identification of subpopulations in flow cytometric list mode data using cluster analysis
    • Murphy R.F. Automatic identification of subpopulations in flow cytometric list mode data using cluster analysis. Cytometry 6 (1985) 302-309
    • (1985) Cytometry , vol.6 , pp. 302-309
    • Murphy, R.F.1
  • 9
    • 0026603242 scopus 로고
    • Analyzing multivariate flow cytometric data in aquatic sciences
    • Demers S., Kim J., Legendre P., and Legendre L. Analyzing multivariate flow cytometric data in aquatic sciences. Cytometry 13 (1992) 291-298
    • (1992) Cytometry , vol.13 , pp. 291-298
    • Demers, S.1    Kim, J.2    Legendre, P.3    Legendre, L.4
  • 10
    • 0027320288 scopus 로고
    • Cluster analysis of flow cytometric list mode data on a personal computer
    • Bakker Schut T.C., De Grooth B.G., and Greeve J. Cluster analysis of flow cytometric list mode data on a personal computer. Cytometry 14 (1993) 649-659
    • (1993) Cytometry , vol.14 , pp. 649-659
    • Bakker Schut, T.C.1    De Grooth, B.G.2    Greeve, J.3
  • 12
    • 0035396522 scopus 로고    scopus 로고
    • Comparison of five clustering algorithms to classify phytoplankton from flow cytometry data
    • Wilkins M.F., Hardy S.A., Boddy L., and Morris C.W. Comparison of five clustering algorithms to classify phytoplankton from flow cytometry data. Cytometry 44 (2001) 210-217
    • (2001) Cytometry , vol.44 , pp. 210-217
    • Wilkins, M.F.1    Hardy, S.A.2    Boddy, L.3    Morris, C.W.4
  • 13
    • 0029873409 scopus 로고    scopus 로고
    • Application of neural networks to flow cytometry data analysis and real-time cell classification
    • Frankel D.S., Frankel S.L., Binder B.J., and Vogt R.F. Application of neural networks to flow cytometry data analysis and real-time cell classification. Cytometry 23 (1996) 290-302
    • (1996) Cytometry , vol.23 , pp. 290-302
    • Frankel, D.S.1    Frankel, S.L.2    Binder, B.J.3    Vogt, R.F.4
  • 14
    • 0027544701 scopus 로고
    • Real-time adaptive clustering of flow cytometric data
    • Fu L., Yang M., Braylan R., and Benson N. Real-time adaptive clustering of flow cytometric data. Pattern Recognit 26 (1993) 365-373
    • (1993) Pattern Recognit , vol.26 , pp. 365-373
    • Fu, L.1    Yang, M.2    Braylan, R.3    Benson, N.4
  • 15
    • 33745948907 scopus 로고    scopus 로고
    • Automated in-silico detection of cell populations in flow cytometry readouts and its application to leukemia disease monitoring
    • Toedling J., Rhein P., Ratei R., Karawajew L., and Spang R. Automated in-silico detection of cell populations in flow cytometry readouts and its application to leukemia disease monitoring. BMC Bioinform 7 (2006) 282
    • (2006) BMC Bioinform , vol.7 , pp. 282
    • Toedling, J.1    Rhein, P.2    Ratei, R.3    Karawajew, L.4    Spang, R.5
  • 16
    • 42049123647 scopus 로고    scopus 로고
    • Automated gating of flow cytometry data via robust model-based clustering
    • Lo K., Brinkman R., and Gottardo R. Automated gating of flow cytometry data via robust model-based clustering. Cytometry 73 4 (2008) 321-332
    • (2008) Cytometry , vol.73 , Issue.4 , pp. 321-332
    • Lo, K.1    Brinkman, R.2    Gottardo, R.3
  • 18
    • 34547490291 scopus 로고    scopus 로고
    • The probabilities mixture model for clustering flow-cytometric data: an application to gating lymphocytes in peripheral blood
    • Lakoumentas J., Drakos J., Karakantza M., Zoumbos N., Nikiforidis G., and Sakellaropoulos G. The probabilities mixture model for clustering flow-cytometric data: an application to gating lymphocytes in peripheral blood. Lect Notes Comput Sci 4345 (2006) 150-160
    • (2006) Lect Notes Comput Sci , vol.4345 , pp. 150-160
    • Lakoumentas, J.1    Drakos, J.2    Karakantza, M.3    Zoumbos, N.4    Nikiforidis, G.5    Sakellaropoulos, G.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.