메뉴 건너뛰기




Volumn 45, Issue 3, 2009, Pages 1454-1457

Noise reduction in a non-homogenous ground penetrating radar problem by multiobjective neural networks

Author keywords

Ground penetrating radar; Inverse problems; Multiobjective training algorithms; Neural networks (NNs); Noise; Regularization methods

Indexed keywords

ACOUSTIC INTENSITY; ADAPTIVE FILTERS; DIFFERENTIAL EQUATIONS; DYNAMIC LOADS; ELECTRIC FILTERS; FINITE DIFFERENCE TIME DOMAIN METHOD; GAUSSIAN NOISE (ELECTRONIC); GEOLOGICAL SURVEYS; INVERSE PROBLEMS; MULTIOBJECTIVE OPTIMIZATION; RADAR; RADAR ANTENNAS; SIGNAL TO NOISE RATIO;

EID: 61449223713     PISSN: 00189464     EISSN: None     Source Type: Journal    
DOI: 10.1109/TMAG.2009.2012677     Document Type: Article
Times cited : (10)

References (11)
  • 1
    • 61449255974 scopus 로고
    • Detection of prestressed steel tendons behind reinforcement bars, detection of voids in concrete structures-A suitable application for radar systems
    • C. Flohrer and B. Bernhardt, "Detection of prestressed steel tendons behind reinforcement bars, detection of voids in concrete structures-A suitable application for radar systems," Nondestructive Test. Civil Eng., vol. 1, pp. 277-234, 1993.
    • (1993) Nondestructive Test. Civil Eng , vol.1 , pp. 277-234
    • Flohrer, C.1    Bernhardt, B.2
  • 2
    • 2442686895 scopus 로고    scopus 로고
    • GPR -history, trends, and future developments
    • A. P. Annan, "GPR -history, trends, and future developments," Subsurface Sens. Technol. Appl, vol. 3, pp. 253-270, 2002.
    • (2002) Subsurface Sens. Technol. Appl , vol.3 , pp. 253-270
    • Annan, A.P.1
  • 3
    • 12844258778 scopus 로고    scopus 로고
    • London, U.K, The Institute of Electrical Engineers
    • D. J. Daniels, Ground Penetrating Radar. London, U.K.: The Institute of Electrical Engineers, 2004.
    • (2004) Ground Penetrating Radar
    • Daniels, D.J.1
  • 4
    • 0024064241 scopus 로고
    • Introduction to subsurface radar
    • D. J. Daniels, H. F. Scott, and D. J. Gunton, "Introduction to subsurface radar," IEE Proc. F, vol. 135, no. 4, pp. 278-321, 1988.
    • (1988) IEE Proc. F , vol.135 , Issue.4 , pp. 278-321
    • Daniels, D.J.1    Scott, H.F.2    Gunton, D.J.3
  • 5
    • 33744923143 scopus 로고    scopus 로고
    • Improvement in GPR coherent noise attenuation using T p and wavelet transforms
    • May-Jun
    • L. Nuzzo and T. Quarta, "Improvement in GPR coherent noise attenuation using T p and wavelet transforms," Geophys., vol. 69, no. 3. pp. 789-802, May-Jun. 2004.
    • (2004) Geophys , vol.69 , Issue.3 , pp. 789-802
    • Nuzzo, L.1    Quarta, T.2
  • 6
    • 49649091536 scopus 로고    scopus 로고
    • The Q-norm complexity measure and the minimum gradient method: A novel approach to the machine learning structural risk minimization problem
    • D. A. G. Vieira, R. H. C. Takahashi, V. Palade, J. A. Vasconcelos, and W. M. Caminhas, "The Q-norm complexity measure and the minimum gradient method: A novel approach to the machine learning structural risk minimization problem," IEEE Trans. Neural Netw., vol. 19, pp. 1415-1430, 2008.
    • (2008) IEEE Trans. Neural Netw , vol.19 , pp. 1415-1430
    • Vieira, D.A.G.1    Takahashi, R.H.C.2    Palade, V.3    Vasconcelos, J.A.4    Caminhas, W.M.5
  • 7
    • 34249073096 scopus 로고    scopus 로고
    • Controlling the parallel layer perceptron complexity using a multiobjective learning algorithm
    • D. A. G. Vieira, W. M. Caminhas, and I. A. Vasconcelos, "Controlling the parallel layer perceptron complexity using a multiobjective learning algorithm," Neural Comput. Appl, vol. 16, no. 3-4, pp. 317-325, 2006.
    • (2006) Neural Comput. Appl , vol.16 , Issue.3-4 , pp. 317-325
    • Vieira, D.A.G.1    Caminhas, W.M.2    Vasconcelos, I.A.3
  • 8
    • 12844261694 scopus 로고    scopus 로고
    • An electromagnetic approach based on neural networks for the GPR investigation of buried cylinders
    • Jan
    • S. Caorsi and G. Cevini, "An electromagnetic approach based on neural networks for the GPR investigation of buried cylinders," IEEE Geosci. Remote Sens. Lett., vol. 2, no. 1, pp. 3-7, Jan. 2005.
    • (2005) IEEE Geosci. Remote Sens. Lett , vol.2 , Issue.1 , pp. 3-7
    • Caorsi, S.1    Cevini, G.2
  • 9
    • 4043131801 scopus 로고    scopus 로고
    • Neural networks trained by scattered electromagnetic data for GPR applications
    • May
    • S. Caorsi and G. Cevini, "Neural networks trained by scattered electromagnetic data for GPR applications," in Proc. 2nd Int. Workshop Adv. GPR, May 2003, pp. 14-16.
    • (2003) Proc. 2nd Int. Workshop Adv. GPR , pp. 14-16
    • Caorsi, S.1    Cevini, G.2
  • 10
    • 44049086696 scopus 로고    scopus 로고
    • Characterizing inclusions in a non-homogenous GPR problem by neural networks
    • Jun
    • L. Travassos, D. A. G. Vieira, N. Ida, C. Vollaire, and A. Nicolas, "Characterizing inclusions in a non-homogenous GPR problem by neural networks," IEEE Trans. Magn., vol. 44, no. 6, pp. 1630-1633, Jun. 2008.
    • (2008) IEEE Trans. Magn , vol.44 , Issue.6 , pp. 1630-1633
    • Travassos, L.1    Vieira, D.A.G.2    Ida, N.3    Vollaire, C.4    Nicolas, A.5
  • 11


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.