메뉴 건너뛰기




Volumn 19, Issue 2, 2007, Pages 302-312

Toward automated intelligent manufacturing systems (AIMS)

Author keywords

Computational intelligence; Design of experiments (DOE); Genetic algorithm; Intelligent systems; Machine learning; Response surface designs; Six sigma; Support vector machine

Indexed keywords


EID: 61349163620     PISSN: 10919856     EISSN: 15265528     Source Type: Journal    
DOI: 10.1287/ijoc.1050.0171     Document Type: Article
Times cited : (5)

References (30)
  • 1
    • 0037534150 scopus 로고    scopus 로고
    • Using neural network rule extraction and decision tables for credit-risk evaluation
    • Baesens, B., R. Setiono, C. Mucs, J. Vanthienen. 2003. Using neural network rule extraction and decision tables for credit-risk evaluation. Management Sci. 49 312-329.
    • (2003) Management Sci , vol.49 , pp. 312-329
    • Baesens, B.1    Setiono, R.2    Mucs, C.3    Vanthienen, J.4
  • 2
    • 61349104229 scopus 로고    scopus 로고
    • The Motorola quality process: Six Sigma
    • G. M. Bounds, ed, Irwin, Chicago, IL
    • Buetow, R. 1996. The Motorola quality process: Six Sigma. G. M. Bounds, ed. Cases in Quality. Irwin, Chicago, IL, 229-249.
    • (1996) Cases in Quality , pp. 229-249
    • Buetow, R.1
  • 5
    • 84953649167 scopus 로고
    • Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory. J
    • Cukicr, R. I., C. M. Fortuin, K. E. Shuler, A. G. Petschek, J. H. Schaibly. 1973. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory. J. Chemical Phys. 59 3873-3878.
    • (1973) Chemical Phys , vol.59 , pp. 3873-3878
    • Cukicr, R.I.1    Fortuin, C.M.2    Shuler, K.E.3    Petschek, A.G.4    Schaibly, J.H.5
  • 7
    • 0040377513 scopus 로고    scopus 로고
    • An analysis of the applications of neural networks in finance
    • Fadlalla, A., C. H. Lin. 2001. An analysis of the applications of neural networks in finance. Interfaces 31 112-122.
    • (2001) Interfaces , vol.31 , pp. 112-122
    • Fadlalla, A.1    Lin, C.H.2
  • 8
    • 84862755877 scopus 로고    scopus 로고
    • Nonlinear multivariate statistical sensitivity analysis of environmental models with application to heavy metal adsorption from contaminated wastewater
    • Genova, Italy
    • Fassò, A. 2002. Nonlinear multivariate statistical sensitivity analysis of environmental models with application to heavy metal adsorption from contaminated wastewater. Internat. Environ-metrics Soc. (TIES) Conf, Genova, Italy.
    • (2002) Internat. Environ-metrics Soc. (TIES) Conf
    • Fassò, A.1
  • 13
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • B. Scholkopf, C. Surges, A. Smola, eds, MIT Press, Cambridge, MA
    • Joachims, T. 1998. Making large-scale SVM learning practical. B. Scholkopf, C. Surges, A. Smola, eds. Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge, MA, 169-184.
    • (1998) Advances in Kernel Methods: Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 17
    • 24944498394 scopus 로고    scopus 로고
    • Institute for Theoretical Computer Science, Graz University of Technology, Graz, Austria
    • Schwaighofer, A. 2002. MATLAB Interface to SVM Light. Institute for Theoretical Computer Science, Graz University of Technology, Graz, Austria, http://www.cis.tugraz.at/igi/aschwaig/software.html.
    • (2002) MATLAB Interface to SVM Light
    • Schwaighofer, A.1
  • 18
    • 61349190859 scopus 로고    scopus 로고
    • Six Sigma Simulator
    • Krannert School of Management, Purdue University, West Lafayette, IN
    • Seo, H., H. Moskowitz. 2002. Six Sigma Simulator. Unpublished Research Report, Krannert School of Management, Purdue University, West Lafayette, IN.
    • (2002) Unpublished Research Report
    • Seo, H.1    Moskowitz, H.2
  • 20
    • 0000760143 scopus 로고
    • Sensitivity analysis for nonlinear mathematical models
    • Sobol, I. M. 1993. Sensitivity analysis for nonlinear mathematical models. Math. Model. Comput. Exp. 1 407-414.
    • (1993) Math. Model. Comput. Exp , vol.1 , pp. 407-414
    • Sobol, I.M.1
  • 21
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens, J. A. K., J, Vandewalle. 1999. Least squares support vector machine classifiers. Neural Processing Lett. 9 293-300.
    • (1999) Neural Processing Lett , vol.9 , pp. 293-300
    • Suykens, J.A.K.J.1    Vandewalle2
  • 23
    • 0036825528 scopus 로고    scopus 로고
    • Weighted least squares support vector machines: Robustness and sparse approximation
    • Suykens, J. A. K., J. De Brabanter, L. Lukas, J. Vandewalle. 2002a. Weighted least squares support vector machines: Robustness and sparse approximation. Neurocomputing 48 85-105.
    • (2002) Neurocomputing , vol.48 , pp. 85-105
    • Suykens, J.A.K.1    De Brabanter, J.2    Lukas, L.3    Vandewalle, J.4
  • 25
    • 61349202043 scopus 로고    scopus 로고
    • A support vector machine formulation to PCA analysis and its kernel version
    • Internal Report 02-68, ESAT-SISTA, K. U. Leuven, Leuven, Belgium
    • Suykens, J. A. K., T. Van Gestel, J. Vandewalle, B. De Moor. 2002c. A support vector machine formulation to PCA analysis and its kernel version. Internal Report 02-68, ESAT-SISTA, K. U. Leuven, Leuven, Belgium.
    • (2002)
    • Suykens, J.A.K.1    Van Gestel, T.2    Vandewalle, J.3    De Moor, B.4
  • 26
    • 0033720879 scopus 로고    scopus 로고
    • Support vector machine for regression and applications to financial forecasting
    • Como, Italy
    • Trafalis, T. B., H. Ince. 2000. Support vector machine for regression and applications to financial forecasting. Internat. Joint Conf. Neural Network (IJCNN) 2000, Como, Italy, 348-353.
    • (2000) Internat. Joint Conf. Neural Network (IJCNN) 2000 , pp. 348-353
    • Trafalis, T.B.1    Ince, H.2
  • 29
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation and signal processing
    • M. Mozer, M. Jordan, T. Petsche, eds, MIT Press, Cambridge, MA
    • Vapnik, V., S. Golowich, A. Smola. 1997. Support vector method for function approximation, regression estimation and signal processing. M. Mozer, M. Jordan, T. Petsche, eds. Advances in Neural Information Processing Systems, Vol. 9. MIT Press, Cambridge, MA.
    • (1997) Advances in Neural Information Processing Systems , vol.9
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 30
    • 0034845232 scopus 로고    scopus 로고
    • Shape deformation: SVM regression and application to medical image segmentation
    • Vancouver, BC, Canada
    • Wang, S., W. Zhu, Z. Liang. 2001. Shape deformation: SVM regression and application to medical image segmentation. Internat. Conf. Comput. Vision (ICCV'O1), Vol. 2. Vancouver, BC, Canada, 209-216.
    • (2001) Internat. Conf. Comput. Vision (ICCV'O1) , vol.2 , pp. 209-216
    • Wang, S.1    Zhu, W.2    Liang, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.