메뉴 건너뛰기




Volumn 33, Issue 2, 2009, Pages 107-112

Neural network-based computer-aided diagnosis in classification of primary generalized epilepsy by EEG signals

Author keywords

Epilepsy; Multilayer perceptron neural network (MLPNN); Primary generalized epilepsy

Indexed keywords

ADOLESCENT; ADULT; ALGORITHMS; ARTIFICIAL INTELLIGENCE; CHILD; CHILD, PRESCHOOL; DATA INTERPRETATION, STATISTICAL; DIAGNOSIS, COMPUTER-ASSISTED; ELECTROENCEPHALOGRAPHY; EPILEPSY, GENERALIZED; FEMALE; HUMANS; INFANT; INFANT, NEWBORN; MALE; MIDDLE AGED; NEURAL NETWORKS (COMPUTER); TURKEY; YOUNG ADULT;

EID: 61349154936     PISSN: 01485598     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10916-008-9170-8     Document Type: Article
Times cited : (36)

References (31)
  • 2
    • 20444390527 scopus 로고    scopus 로고
    • EEG in neurological conditions other than epilepsy: When does it help, what does it add?
    • S. J. M. Smith 2005 EEG in neurological conditions other than epilepsy: When does it help, what does it add? J. Neurol. Neurosurg. Psychiatry 76 8 12
    • (2005) J. Neurol. Neurosurg. Psychiatry , vol.76 , pp. 8-12
    • Smith, S.J.M.1
  • 3
    • 20444390669 scopus 로고    scopus 로고
    • EEG in diagnosis, classification, and management of patients with epilepsy
    • S. J. M. Smith 2005 EEG in diagnosis, classification, and management of patients with epilepsy J. Neurol. Neurosurg. Psychiatry 76 2 7
    • (2005) J. Neurol. Neurosurg. Psychiatry , vol.76 , pp. 2-7
    • Smith, S.J.M.1
  • 4
    • 0032569514 scopus 로고    scopus 로고
    • Epileptology of the first-seizure presentation: A clinical, electroencephalographic and magnetic resonance imaging study of 300 consecutive patients
    • M. A. King M. R. Newton G. D. Jackson 1998 Epileptology of the first-seizure presentation: a clinical, electroencephalographic and magnetic resonance imaging study of 300 consecutive patients Lancet 352 1007 1011
    • (1998) Lancet , vol.352 , pp. 1007-1011
    • King, M.A.1    Newton, M.R.2    Jackson, G.D.3
  • 6
    • 61349117631 scopus 로고
    • Butterworth Great Britain
    • Kiloh, L. G., McComas, A. J., and Osselton, J. W., Clinical electroencephalography. Butterworth, Great Britain, pp. 168-200, 1972.
    • (1972) , pp. 168-200
    • Kiloh, L.G.1    McComas, A.J.2    Osselton, J.W.3
  • 7
    • 0033715540 scopus 로고    scopus 로고
    • BIONET an artificial neural network model for diagnosis of diseases
    • S. T. Selvi S. Arumugam L. Ganesan 2001 BIONET an artificial neural network model for diagnosis of diseases Pattern. Recogn. Lett 21 721 740
    • (2001) Pattern. Recogn. Lett , vol.21 , pp. 721-740
    • Selvi, S.T.1    Arumugam, S.2    Ganesan, L.3
  • 8
    • 0036082056 scopus 로고    scopus 로고
    • Artificial neural network predictive model for allergic disease using neural network nucleotide polymorphisms data
    • 5
    • S. Tomida T. Hanai N. Koma Y. Suzuki T. Kobayashi H. Honda 2002 Artificial neural network predictive model for allergic disease using neural network nucleotide polymorphisms data J. Biosci. Bioeng 93 5 470 478
    • (2002) J. Biosci. Bioeng , vol.93 , pp. 470-478
    • Tomida, S.1    Hanai, T.2    Koma, N.3    Suzuki, Y.4    Kobayashi, T.5    Honda, H.6
  • 9
    • 41849089775 scopus 로고    scopus 로고
    • A Radial Basis Function Neural Network (RBNN) Approach for structural classification of thyroid diseases
    • in press
    • Erol, R., Ogulata, S. N., Sahin, C., and Alparslan, N. Z., A Radial Basis Function Neural Network (RBNN) Approach for structural classification of thyroid diseases. The Journal of Medical Systems, (2008, in press).
    • (2008) The Journal of Medical Systems
    • Erol, R.1    Ogulata, S.N.2    Sahin, C.3    Alparslan, N.Z.4
  • 11
    • 0030219951 scopus 로고    scopus 로고
    • Detection of seizure activity in EEG by artificial neural network: A preliminary study
    • N. Pradhan P. K. Sadasivan G. R. Arunodaya 1996 Detection of seizure activity in EEG by artificial neural network: A preliminary study Comput. Biomed. Res 29 303 313
    • (1996) Comput. Biomed. Res , vol.29 , pp. 303-313
    • Pradhan, N.1    Sadasivan, P.K.2    Arunodaya, G.R.3
  • 12
    • 0031858128 scopus 로고    scopus 로고
    • Seizure detection using a self-organizing neural network: Validation and comparison with other detection strategies
    • A. J. Gabor 1998 Seizure detection using a self-organizing neural network: validation and comparison with other detection strategies Electroencephalogr. Clin. Neurophysiol 107 27 32
    • (1998) Electroencephalogr. Clin. Neurophysiol , vol.107 , pp. 27-32
    • Gabor, A.J.1
  • 13
    • 0035259288 scopus 로고    scopus 로고
    • An artificial neural network to diagnosing epilepsy using lateralized burst of theta EEGs
    • 1
    • S. Walczak W. J. Nowack 2001 An artificial neural network to diagnosing epilepsy using lateralized burst of theta EEGs J. Med. Syst 25 1 9 20
    • (2001) J. Med. Syst , vol.25 , pp. 9-20
    • Walczak, S.1    Nowack, W.J.2
  • 14
    • 17744374301 scopus 로고    scopus 로고
    • Classification of EEG signals using neural network and logistic regression
    • A. Subasi E. Ercelebi 2005 Classification of EEG signals using neural network and logistic regression Comput. Methods Programs Biomed 78 87 99
    • (2005) Comput. Methods Programs Biomed , vol.78 , pp. 87-99
    • Subasi, A.1    Ercelebi, E.2
  • 15
    • 26944479675 scopus 로고    scopus 로고
    • Automatic seizure detection in EEG using logistic regression and artificial neural network
    • A. Alkan E. Koklukaya A. Subasi 2005 Automatic seizure detection in EEG using logistic regression and artificial neural network J. Neurosci. Methods 148 167 176
    • (2005) J. Neurosci. Methods , vol.148 , pp. 167-176
    • Alkan, A.1    Koklukaya, E.2    Subasi, A.3
  • 16
    • 26944458497 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients
    • 2
    • I. Guler E. D. Ubeyli 2005 Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients J. Neurosci. Methods 148 2 113 121
    • (2005) J. Neurosci. Methods , vol.148 , pp. 113-121
    • Guler, I.1    Ubeyli, E.D.2
  • 17
    • 51349117677 scopus 로고    scopus 로고
    • A radial basis function neural network model for classification of epilepsy using EEG signals
    • in press
    • Aslan, K., Bozdemir, H., Sahin, C., Ogulata, S. N., and Erol, R., A radial basis function neural network model for classification of epilepsy using EEG signals. The Journal of Medical Systems, (2008, in press).
    • (2008) The Journal of Medical Systems
    • Aslan, K.1    Bozdemir, H.2    Sahin, C.3    Ogulata, S.N.4    Erol, R.5
  • 19
    • 0019509687 scopus 로고
    • Proposal for revised clinical and electroencephalographic classification of epileptic seizures. From the Commission on Classification and Terminology of the International League Against Epilepsy
    • Proposal for revised clinical and electroencephalographic classification of epileptic seizures. From the Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia. 22:489-501, 1981.
    • (1981) Epilepsia , vol.22 , pp. 489-501
  • 20
    • 0347125213 scopus 로고    scopus 로고
    • A comparison of adult onset and "classical" idiopathic generalised epilepsy
    • A. Nicolson D. W. Chadwick D. F. Smith 2004 A comparison of adult onset and "classical" idiopathic generalised epilepsy J. Neurol. Neurosurg. Psychiatry 75 72 74
    • (2004) J. Neurol. Neurosurg. Psychiatry , vol.75 , pp. 72-74
    • Nicolson, A.1    Chadwick, D.W.2    Smith, D.F.3
  • 22
    • 61349119555 scopus 로고    scopus 로고
    • The University of Amsterdam Press Amsterdam
    • Krose, B., and Smaget, P. V. D., An introduction to neural networks. The University of Amsterdam Press, Amsterdam, 1996.
    • (1996)
    • Krose, B.1    Smaget, P.V.D.2
  • 23
    • 61349197755 scopus 로고
    • Macmillan New York
    • Haykin, S., Neural networks a comprehensive foundation. Macmillan, New York, 1994.
    • (1994)
    • Haykin, S.1
  • 24
    • 61349151927 scopus 로고    scopus 로고
    • The newsgroup for people who want to use or explore the capabilities of Artificial Neural Networks or Neural-Network-like structures. SAS Institute Inc. 2002. (Accessed on March 19, 2008)
    • The newsgroup for people who want to use or explore the capabilities of Artificial Neural Networks or Neural-Network-like structures. SAS Institute Inc. 2002. (Accessed on March 19, 2008 at ftp://ftp.sas.com/pub/neural/FAQ2.htm).
  • 25
  • 26
    • 41849118390 scopus 로고
    • Optimization training neural nets
    • 2
    • E. Bernand 1992 Optimization training neural nets IEEE Trans. Neural Networks 3 2 989 993
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 989-993
    • Bernand, E.1
  • 27
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • 6
    • M. T. Hagan M. B. Menhaj 1994 Training feedforward networks with the Marquardt algorithm IEEE Trans. Neural Networks 5 6 989 993
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.