-
1
-
-
60949088833
-
Superconvergence of projection methods for weakly singular integral operators
-
Constanda C., and Potapenko S. (Eds), Birkhäuser Verlag, Boston
-
Ahues M., Largillier A., and Amosov A. Superconvergence of projection methods for weakly singular integral operators. In: Constanda C., and Potapenko S. (Eds). Integral Methods in Science and Engineering (2008), Birkhäuser Verlag, Boston 1-8
-
(2008)
Integral Methods in Science and Engineering
, pp. 1-8
-
-
Ahues, M.1
Largillier, A.2
Amosov, A.3
-
2
-
-
0027599793
-
Universal approximation bounds for superpositions of a sigmoidal function
-
Barron A.R. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inform. Theory 39 (1993) 930-945
-
(1993)
IEEE Trans. Inform. Theory
, vol.39
, pp. 930-945
-
-
Barron, A.R.1
-
4
-
-
24944532676
-
Pointwise approximation for neural networks
-
Cao F.L., Xu Z.B., and Li Y.M. Pointwise approximation for neural networks. Lect. Notes Comput. Sci. 3496 (2005) 39-44
-
(2005)
Lect. Notes Comput. Sci.
, vol.3496
, pp. 39-44
-
-
Cao, F.L.1
Xu, Z.B.2
Li, Y.M.3
-
5
-
-
38649094938
-
The estimate for approximation error of neural networks: A constructive approach
-
Cao F.L., Xie T.F., and Xu Z.B. The estimate for approximation error of neural networks: A constructive approach. Neurocomputing 71 (2008) 626-630
-
(2008)
Neurocomputing
, vol.71
, pp. 626-630
-
-
Cao, F.L.1
Xie, T.F.2
Xu, Z.B.3
-
6
-
-
0029343809
-
Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to a dynamic system
-
Chen T.P., and Chen H. Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to a dynamic system. IEEE Trans. Neural Netw. 6 (1995) 911-917
-
(1995)
IEEE Trans. Neural Netw.
, vol.6
, pp. 911-917
-
-
Chen, T.P.1
Chen, H.2
-
8
-
-
0000378922
-
Approximation by ridge functions and neural networks with one hidden layer
-
Chui C.K., and Li X. Approximation by ridge functions and neural networks with one hidden layer. J. Approx. Theory 70 (1992) 131-141
-
(1992)
J. Approx. Theory
, vol.70
, pp. 131-141
-
-
Chui, C.K.1
Li, X.2
-
9
-
-
0024861871
-
Approximation by superpositions of sigmoidal function
-
Cybenko G. Approximation by superpositions of sigmoidal function. Math. Control Signal Systems 2 (1989) 303-314
-
(1989)
Math. Control Signal Systems
, vol.2
, pp. 303-314
-
-
Cybenko, G.1
-
10
-
-
0024866495
-
On the approximate realization of continuous mappings by neural networks
-
Funahashi K.I. On the approximate realization of continuous mappings by neural networks. Neural Netw. 2 (1989) 183-192
-
(1989)
Neural Netw.
, vol.2
, pp. 183-192
-
-
Funahashi, K.I.1
-
11
-
-
0024880831
-
Multilayer feedforward networks are universal approximation
-
Hornik K., Stinchombe M., and White H. Multilayer feedforward networks are universal approximation. Neural Netw. 2 (1989) 359-366
-
(1989)
Neural Netw.
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchombe, M.2
White, H.3
-
12
-
-
0027262895
-
Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
-
Leshno M., Lin V.Y., Pinks A., and Schocken S. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw. 6 (1993) 861-867
-
(1993)
Neural Netw.
, vol.6
, pp. 861-867
-
-
Leshno, M.1
Lin, V.Y.2
Pinks, A.3
Schocken, S.4
-
13
-
-
28244460747
-
Constructive approximate interpolation by neural networks
-
Llanas B., and Sainz F.J. Constructive approximate interpolation by neural networks. J. Comput. Appl. Math. 188 (2006) 283-308
-
(2006)
J. Comput. Appl. Math.
, vol.188
, pp. 283-308
-
-
Llanas, B.1
Sainz, F.J.2
-
16
-
-
0001574595
-
Uniform approximation by neural networks
-
Makovoz Y. Uniform approximation by neural networks. J. Approx. Theory 95 (1998) 215-228
-
(1998)
J. Approx. Theory
, vol.95
, pp. 215-228
-
-
Makovoz, Y.1
-
17
-
-
0000194429
-
Degree of approximation by neural networks with a single hidden layer
-
Mhaskar H.N., and Miccheli C.A. Degree of approximation by neural networks with a single hidden layer. Adv. Appl. Math. 16 (1995) 151-183
-
(1995)
Adv. Appl. Math.
, vol.16
, pp. 151-183
-
-
Mhaskar, H.N.1
Miccheli, C.A.2
-
18
-
-
0032144406
-
Constructive function approximation by three-layer artificial neural networks
-
Suzuki S. Constructive function approximation by three-layer artificial neural networks. Neural Netw. 11 (1998) 1049-1058
-
(1998)
Neural Netw.
, vol.11
, pp. 1049-1058
-
-
Suzuki, S.1
-
19
-
-
24344496437
-
The essential order of approximation for neural networks
-
Xu Z.B., and Cao F.L. The essential order of approximation for neural networks. Sci. China Ser. F 47 (2004) 97-112
-
(2004)
Sci. China Ser. F
, vol.47
, pp. 97-112
-
-
Xu, Z.B.1
Cao, F.L.2
|