-
1
-
-
0032336375
-
Balancing vectors and Gaussian measures of n-dimensional convex bodies
-
W. Banaszczyk, Balancing vectors and Gaussian measures of n-dimensional convex bodies. Random Structures Algorithms 12(1998), no. 4, 351-360.
-
(1998)
Random Structures Algorithms
, vol.12
, Issue.4
, pp. 351-360
-
-
Banaszczyk, W.1
-
2
-
-
0033269755
-
On triples in arithmetic progression
-
J. Bourgain, On triples in arithmetic progression. Geom. Funct. Anal. 9(1999), no. 5, 968-984.
-
(1999)
Geom. Funct. Anal
, vol.9
, Issue.5
, pp. 968-984
-
-
Bourgain, J.1
-
3
-
-
38949133640
-
Some problems
-
H. T. Croft, Some problems. Eureka 31(1968), 18-19.
-
(1968)
Eureka
, vol.31
, pp. 18-19
-
-
Croft, H.T.1
-
5
-
-
23744478411
-
A Szemerédi-type regularity lemma in abelian groups, with applications
-
-. A Szemerédi-type regularity lemma in abelian groups, with applications. Geom. Funct. Anal. 15(2005), no. 2, 340-376.
-
(2005)
Geom. Funct. Anal
, vol.15
, Issue.2
, pp. 340-376
-
-
Green, B.J.1
-
6
-
-
60849087798
-
-
-. Finite field models in additive combinatorics. In: Surveys in combinatorics 2005, London Math. Soc. Lecture Note Ser. 327, Cambridge University Press, Campbridge, 2005, pp. 1-27.
-
-. Finite field models in additive combinatorics. In: Surveys in combinatorics 2005, London Math. Soc. Lecture Note Ser. 327, Cambridge University Press, Campbridge, 2005, pp. 1-27.
-
-
-
-
8
-
-
0002404624
-
On the Littlewood problem
-
Izv. Akad, 451981, 463
-
S. V. Konyagin, On the Littlewood problem. Izv. Akad. Nauk SSSR Ser. Mat. 45(1981), no. 2, 243-265, 463.
-
Nauk SSSR Ser. Mat
, Issue.2
, pp. 243-265
-
-
Konyagin, S.V.1
-
9
-
-
60849138530
-
-
T. P. Lukashenko, Properties of a maximal function of a measure v with respect to a measure μ, Mat. Zametki 39(1986), no. 2, 212-220, 302.
-
T. P. Lukashenko, Properties of a maximal function of a measure v with respect to a measure μ, Mat. Zametki 39(1986), no. 2, 212-220, 302.
-
-
-
-
11
-
-
58449126619
-
The Littlewood-Gowers problem
-
T. W. Sanders, The Littlewood-Gowers problem. J. Anal. Math. 101(2007), 123-162.
-
(2007)
J. Anal. Math
, vol.101
, pp. 123-162
-
-
Sanders, T.W.1
-
12
-
-
60849089025
-
-
expository note
-
T. C. Tao, The Bourgain-Roth theorem, expository note, http://www.math.ucla.edu/~tao/preprints/Expository/roth-bourgain.dvi.
-
The Bourgain-Roth theorem
-
-
Tao, T.C.1
|