메뉴 건너뛰기




Volumn 61, Issue 1, 2009, Pages 141-164

On the Littlewood problem modulo a prime

Author keywords

[No Author keywords available]

Indexed keywords


EID: 60849124208     PISSN: 0008414X     EISSN: None     Source Type: Journal    
DOI: 10.4153/CJM-2009-007-4     Document Type: Article
Times cited : (33)

References (13)
  • 1
    • 0032336375 scopus 로고    scopus 로고
    • Balancing vectors and Gaussian measures of n-dimensional convex bodies
    • W. Banaszczyk, Balancing vectors and Gaussian measures of n-dimensional convex bodies. Random Structures Algorithms 12(1998), no. 4, 351-360.
    • (1998) Random Structures Algorithms , vol.12 , Issue.4 , pp. 351-360
    • Banaszczyk, W.1
  • 2
    • 0033269755 scopus 로고    scopus 로고
    • On triples in arithmetic progression
    • J. Bourgain, On triples in arithmetic progression. Geom. Funct. Anal. 9(1999), no. 5, 968-984.
    • (1999) Geom. Funct. Anal , vol.9 , Issue.5 , pp. 968-984
    • Bourgain, J.1
  • 3
    • 38949133640 scopus 로고
    • Some problems
    • H. T. Croft, Some problems. Eureka 31(1968), 18-19.
    • (1968) Eureka , vol.31 , pp. 18-19
    • Croft, H.T.1
  • 5
    • 23744478411 scopus 로고    scopus 로고
    • A Szemerédi-type regularity lemma in abelian groups, with applications
    • -. A Szemerédi-type regularity lemma in abelian groups, with applications. Geom. Funct. Anal. 15(2005), no. 2, 340-376.
    • (2005) Geom. Funct. Anal , vol.15 , Issue.2 , pp. 340-376
    • Green, B.J.1
  • 6
    • 60849087798 scopus 로고    scopus 로고
    • -. Finite field models in additive combinatorics. In: Surveys in combinatorics 2005, London Math. Soc. Lecture Note Ser. 327, Cambridge University Press, Campbridge, 2005, pp. 1-27.
    • -. Finite field models in additive combinatorics. In: Surveys in combinatorics 2005, London Math. Soc. Lecture Note Ser. 327, Cambridge University Press, Campbridge, 2005, pp. 1-27.
  • 8
    • 0002404624 scopus 로고    scopus 로고
    • On the Littlewood problem
    • Izv. Akad, 451981, 463
    • S. V. Konyagin, On the Littlewood problem. Izv. Akad. Nauk SSSR Ser. Mat. 45(1981), no. 2, 243-265, 463.
    • Nauk SSSR Ser. Mat , Issue.2 , pp. 243-265
    • Konyagin, S.V.1
  • 9
    • 60849138530 scopus 로고    scopus 로고
    • T. P. Lukashenko, Properties of a maximal function of a measure v with respect to a measure μ, Mat. Zametki 39(1986), no. 2, 212-220, 302.
    • T. P. Lukashenko, Properties of a maximal function of a measure v with respect to a measure μ, Mat. Zametki 39(1986), no. 2, 212-220, 302.
  • 11
    • 58449126619 scopus 로고    scopus 로고
    • The Littlewood-Gowers problem
    • T. W. Sanders, The Littlewood-Gowers problem. J. Anal. Math. 101(2007), 123-162.
    • (2007) J. Anal. Math , vol.101 , pp. 123-162
    • Sanders, T.W.1
  • 12
    • 60849089025 scopus 로고    scopus 로고
    • expository note
    • T. C. Tao, The Bourgain-Roth theorem, expository note, http://www.math.ucla.edu/~tao/preprints/Expository/roth-bourgain.dvi.
    • The Bourgain-Roth theorem
    • Tao, T.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.