-
1
-
-
14844339425
-
Image change detection algorithms: A systematic survey
-
DOI 10.1109/TIP.2004.838698
-
R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, "Image change detection algorithms: A systematic survey," IEEE Trans. Image Processing, vol. 14, pp. 294-307, 2005. (Pubitemid 40351907)
-
(2005)
IEEE Transactions on Image Processing
, vol.14
, Issue.3
, pp. 294-307
-
-
Radke, R.J.1
Andra, S.2
Al-Kofahi, O.3
Roysam, B.4
-
2
-
-
0031374467
-
Subclutter target detection using sequences of thermal infrared multispectral imagery
-
A. Schaum and A. Stocker, "Subclutter target detection using sequences of thermal infrared multispectral imagery," Proc. SPIE, vol. 3071, pp. 12-22, 1997.
-
(1997)
Proc. SPIE
, vol.3071
, pp. 12-22
-
-
Schaum, A.1
Stocker, A.2
-
3
-
-
0037371011
-
Change detection in overhead imagery using neural networks
-
C. Clifton, 'Change detection in overhead imagery using neural net-works," Applied Intelligence, vol. 18, pp. 215-234, 2003.
-
(2003)
Applied Intelligence
, vol.18
, pp. 215-234
-
-
Clifton, C.1
-
5
-
-
0033707763
-
Automatic analysis of the difference image for unsupervised change detection
-
L. Bruzzone and D. F. Prieto, "Automatic analysis of the difference image for unsupervised change detection," IEEE Trans. Geoscience and Remote Sensing, vol. 38, pp. 1171-1182, 2000.
-
(2000)
IEEE Trans. Geoscience and Remote Sensing
, vol.38
, pp. 1171-1182
-
-
Bruzzone, L.1
Prieto, D.F.2
-
6
-
-
0036699475
-
An image change detection algorithm based on Markov random field models
-
DOI 10.1109/TGRS.2002.802498, PII 1011092002802498
-
T. Kasetkasem and P. K. Varshney, "An image change detection algorithm based on markov random £eld models," IEEE Trans. Geoscience and Remote Sensing, vol. 40, pp. 1815-1823, 2002. (Pubitemid 35170401)
-
(2002)
IEEE Transactions on Geoscience and Remote Sensing
, vol.40
, Issue.8
, pp. 1815-1823
-
-
Kasetkasem, T.1
Varshney, P.K.2
-
7
-
-
0031208638
-
Learning Distributions by Their Density Levels: A Paradigm for Learning without a Teacher
-
S. Ben-David and M. Lindenbaum, "Learning distributions by their density levels: A paradigm for learning without a teacher," J. Computer and System Sciences, vol. 55, pp. 171-182, 1997. (Pubitemid 127433401)
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 171-182
-
-
Ben-David, S.1
Lindenbaum, M.2
-
8
-
-
0003684449
-
-
New York: Springer-Verlag this anomaly detection approach is developed in Chapter 14.2.4, and neatly illustrated in Fig 14.3
-
T. Hastie, R. Tibshirani, and J. Friedman, Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York: Springer-Verlag, 2001, this anomaly detection approach is developed in Chapter 14.2.4, and neatly illustrated in Fig 14.3.
-
(2001)
Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
9
-
-
0013372968
-
Uniform object generation for optimizing one-class classifiers
-
D. Tax and R. Duin, "Uniform object generation for optimizing one-class classifiers," J. Machine Learning Res., vol. 2, pp. 155-173, 2002.
-
(2002)
J. Machine Learning Res.
, vol.2
, pp. 155-173
-
-
Tax, D.1
Duin, R.2
-
10
-
-
79955833476
-
Density level detection is classification
-
L K. Saul, Y. Weiss, and L. Bottou, Eds. Cambridge, MA: MIT Press
-
I. Steinwart, D. Hush, and C. Scovel, 'Density level detection is classification," in Advances in Neural Information Processing Systems 17, L K. Saul, Y. Weiss, and L. Bottou, Eds. Cambridge, MA: MIT Press, 2005, pp. 1337-1344.
-
(2005)
Advances in Neural Information Processing Systems
, vol.17
, pp. 1337-1344
-
-
Steinwart, I.1
Hush, D.2
Scovel, C.3
-
11
-
-
35948936064
-
Resampling approach for anomalous change detection
-
J. Theiler and S. Perkins, 'Resampling approach for anomalous change detection," Proc. SPIE, vol. 6565, pp. 6565-65, 2007.
-
(2007)
Proc. SPIE
, vol.6565
, pp. 6565-65
-
-
Theiler, J.1
Perkins, S.2
|