메뉴 건너뛰기




Volumn 33, Issue 3, 2009, Pages 338-346

A probabilistic method for point matching in the presence of noise and degeneracy

Author keywords

Bayesian analysis; Motion estimation; Nuisance parameters

Indexed keywords

BAYESIAN NETWORKS; COMPUTER VISION; ESTIMATION; IMAGE PROCESSING; PARAMETER ESTIMATION;

EID: 60449112390     PISSN: 09249907     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10851-008-0116-z     Document Type: Article
Times cited : (2)

References (24)
  • 1
    • 0019574599 scopus 로고
    • Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography
    • 6
    • M.A. Fischler R.C. Bolles 1981 Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography Commun. ACM 24 6 381 395
    • (1981) Commun. ACM , vol.24 , pp. 381-395
    • Fischler, M.A.1    Bolles, R.C.2
  • 3
    • 84948977019 scopus 로고    scopus 로고
    • Balanced recovery of 3d structure and camera motion from uncalibrated image sequences
    • B. Georgescu P. Meer 2002 Balanced recovery of 3d structure and camera motion from uncalibrated image sequences 7th Eur. Conf. Comput. Vis. II 294 308
    • (2002) 7th Eur. Conf. Comput. Vis. , vol.2 , pp. 294-308
    • Georgescu, B.1    Meer, P.2
  • 6
    • 0004798493 scopus 로고
    • Bayesian data analysis: Straight-line fitting
    • Gull, S.F.: Bayesian data analysis: straight-line fitting. In: Maximum Entropy and Bayesian Methods, pp. 511-518 (1989)
    • (1989) Maximum Entropy and Bayesian Methods , pp. 511-518
    • Gull, S.F.1
  • 11
    • 43949148209 scopus 로고
    • Statistical analysis of geometric computation
    • 3
    • K. Kanatani 1994 Statistical analysis of geometric computation Comput. Vis. Graph. Image Process. 59 3 286 306
    • (1994) Comput. Vis. Graph. Image Process. , vol.59 , pp. 286-306
    • Kanatani, K.1
  • 14
    • 0032675794 scopus 로고    scopus 로고
    • Optimal rigid motion estimation and performance evaluation with bootstrap
    • B. Matei P. Meer 1999 Optimal rigid motion estimation and performance evaluation with bootstrap IEEE Conf. Comput. Vis. Pattern Recognit. I 339 345
    • (1999) IEEE Conf. Comput. Vis. Pattern Recognit. , vol.1 , pp. 339-345
    • Matei, B.1    Meer, P.2
  • 17
    • 29344450434 scopus 로고    scopus 로고
    • Motion parameter estimation from optical flow without nuisance parameters
    • Ohta, N.: Motion parameter estimation from optical flow without nuisance parameters. In: 3rd IEEE Workshop on Statistical and Computational Theories of Vision (2003). http://department.stat.ucla.edu/~yuille/meetings/papers/sctv03- 24.pdf
    • (2003) 3rd IEEE Workshop on Statistical and Computational Theories of Vision
    • Ohta, N.1
  • 19
    • 0036804760 scopus 로고    scopus 로고
    • Bayesian model estimation and selection for epipolar geometry and generic manifold fitting
    • 1
    • P.H.S. Torr 2002 Bayesian model estimation and selection for epipolar geometry and generic manifold fitting Int. J. Comput. Vis. 50 1 27 45
    • (2002) Int. J. Comput. Vis. , vol.50 , pp. 27-45
    • Torr, P.H.S.1
  • 21
    • 0032166743 scopus 로고    scopus 로고
    • Robust detection of degenerate configurations while estimating the fundamental matrix
    • 3
    • P.H.S. Torr A. Zisserman S.J. Maybank 1998 Robust detection of degenerate configurations while estimating the fundamental matrix Comput. Vis. Image Underst. 71 3 312 333
    • (1998) Comput. Vis. Image Underst. , vol.71 , pp. 312-333
    • Torr, P.H.S.1    Zisserman, A.2    Maybank, S.J.3
  • 22
    • 0032597866 scopus 로고    scopus 로고
    • The problem of degeneracy in structure and motion recovery from uncalibrated image sequences
    • 1
    • P.H.S. Torr A. Zisserman A.W. Fitzgibbon 1999 The problem of degeneracy in structure and motion recovery from uncalibrated image sequences Int. J. Comput. Vis. 32 1 27 44
    • (1999) Int. J. Comput. Vis. , vol.32 , pp. 27-44
    • Torr, P.H.S.1    Zisserman, A.2    Fitzgibbon, A.W.3
  • 23
    • 0035332903 scopus 로고    scopus 로고
    • A Bayesian method for fitting parametric and non-parametric models to noisy data
    • 5
    • M. Werman D. Keren 2001 A Bayesian method for fitting parametric and non-parametric models to noisy data IEEE Trans. Pattern Anal. Mach. Intell. 23 5 528 534
    • (2001) IEEE Trans. Pattern Anal. Mach. Intell. , vol.23 , pp. 528-534
    • Werman, M.1    Keren, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.