메뉴 건너뛰기




Volumn 21, Issue 3, 2009, Pages 281-303

Simulation of a viscoelastic flexible multibody system using absolute nodal coordinate and fractional derivative methods (Multibody System Dynamics DOI: 10.1007/s11044-008-9139-x);Simulation of a viscoelastic flexible multibody system using absolute nodal coordinate and fractional derivative methods

Author keywords

Absolute nodal coordinate; Continuum mechanics; Fractional derivative; HHT I3 method; Newmark method; Viscoelastic material

Indexed keywords

CONTINUUM MECHANICS; EQUATIONS OF MOTION; NUMERICAL METHODS; VISCOELASTICITY;

EID: 60349131711     PISSN: 13845640     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11044-008-9142-2     Document Type: Erratum
Times cited : (50)

References (39)
  • 2
    • 33847753419 scopus 로고    scopus 로고
    • Finite element formulations for transient dynamic analysis in structural systems with viscoelastic treatments containing fractional derivative models
    • F. Cortés M.J. Elejabarrieta 2007 Finite element formulations for transient dynamic analysis in structural systems with viscoelastic treatments containing fractional derivative models Int. J. Numer. Mech. Eng. 69 2173 2195
    • (2007) Int. J. Numer. Mech. Eng. , vol.69 , pp. 2173-2195
    • Cortés, F.1    Elejabarrieta, M.J.2
  • 3
    • 0000266650 scopus 로고
    • A new general law of deformation
    • P.G. Nutting 1921 A new general law of deformation J. Franklin Inst. 191 679 685
    • (1921) J. Franklin Inst. , vol.191 , pp. 679-685
    • Nutting, P.G.1
  • 4
    • 0345218900 scopus 로고
    • A method of analyzing experimental results obtained from elasto-viscous bodies
    • A. Gemant 1936 A method of analyzing experimental results obtained from elasto-viscous bodies Physics 7 311 317
    • (1936) Physics , vol.7 , pp. 311-317
    • Gemant, A.1
  • 7
    • 0020765202 scopus 로고
    • A theoretical basis for the application of fractional calculus to viscoelasticity
    • 3
    • R.L. Bagley P.J. Torvik 1983 A theoretical basis for the application of fractional calculus to viscoelasticity J. Rheol. 27 3 201 210
    • (1983) J. Rheol. , vol.27 , pp. 201-210
    • Bagley, R.L.1    Torvik, P.J.2
  • 8
    • 0022660581 scopus 로고
    • On the fractional calculus model of viscoelastic behaviors
    • 1
    • R.L. Bagley P.J. Torvik 1986 On the fractional calculus model of viscoelastic behaviors J. Rheol. 30 1 133 155
    • (1986) J. Rheol. , vol.30 , pp. 133-155
    • Bagley, R.L.1    Torvik, P.J.2
  • 9
    • 0033149442 scopus 로고    scopus 로고
    • Formulation and integration of the standard linear viscoelastic solid with fractional order rate laws
    • M. Enelund L. Mähler B. Runesson B.M. Josefson 1999 Formulation and integration of the standard linear viscoelastic solid with fractional order rate laws J. Solids Struct. 36 2417 2442
    • (1999) J. Solids Struct. , vol.36 , pp. 2417-2442
    • Enelund, M.1    Mähler, L.2    Runesson, B.3    Josefson, B.M.4
  • 10
    • 34250103892 scopus 로고
    • Computational algorithms for FE formulations involving fractional operators
    • J. Padovan 1987 Computational algorithms for FE formulations involving fractional operators Comput. Mech. 2 271 287
    • (1987) Comput. Mech. , vol.2 , pp. 271-287
    • Padovan, J.1
  • 11
    • 0036650160 scopus 로고    scopus 로고
    • Finite element formulation of viscoelastic constitutive equations using fractional time derivatives
    • A. Schmidt L. Gaul 2002 Finite element formulation of viscoelastic constitutive equations using fractional time derivatives Nonlinear Dyn. 29 37 55
    • (2002) Nonlinear Dyn. , vol.29 , pp. 37-55
    • Schmidt, A.1    Gaul, L.2
  • 12
    • 3042783031 scopus 로고    scopus 로고
    • Finite element formulation of viscoelastic sandwich beams using fractional derivative operators
    • A.C. Galucio J.F. Deü R. Ohayon 2004 Finite element formulation of viscoelastic sandwich beams using fractional derivative operators Comput. Mech. 33 282 291
    • (2004) Comput. Mech. , vol.33 , pp. 282-291
    • Galucio, A.C.1    Deü, J.F.2    Ohayon, R.3
  • 13
    • 38949155205 scopus 로고    scopus 로고
    • Dynamic responses of flexible-link mechanisms with passive active damping treatment
    • J.F. Deü A.C. Galucio R. Ohayon 2008 Dynamic responses of flexible-link mechanisms with passive active damping treatment Comput. Struct. 86 258 265
    • (2008) Comput. Struct. , vol.86 , pp. 258-265
    • Deü, J.F.1    Galucio, A.C.2    Ohayon, R.3
  • 14
    • 0031152691 scopus 로고    scopus 로고
    • Flexible multi-body dynamics review of past and recent developments
    • A.A. Shabana 1997 Flexible multi-body dynamics review of past and recent developments Multibody Syst. Dyn. 1 189 222
    • (1997) Multibody Syst. Dyn. , vol.1 , pp. 189-222
    • Shabana, A.A.1
  • 16
    • 0031223710 scopus 로고    scopus 로고
    • Definition of the slopes and absolute nodal coordinate formulation
    • A.A. Shabana 1997 Definition of the slopes and absolute nodal coordinate formulation Multibody Syst. Dyn. 1 339 348
    • (1997) Multibody Syst. Dyn. , vol.1 , pp. 339-348
    • Shabana, A.A.1
  • 18
    • 33746725171 scopus 로고    scopus 로고
    • Computational dynamics of multibody systems history, formalisms, and applications
    • P. Eberhard W. Schiehlen 2006 Computational dynamics of multibody systems history, formalisms, and applications ASME J. Comput. Nonlinear Dyn. 1 3 12
    • (2006) ASME J. Comput. Nonlinear Dyn. , vol.1 , pp. 3-12
    • Eberhard, P.1    Schiehlen, W.2
  • 21
    • 33745913632 scopus 로고    scopus 로고
    • Analysis of thin beams and cables using the absolute nodal coordinate formulation
    • J. Gerstmayr A.A. Shabana 2006 Analysis of thin beams and cables using the absolute nodal coordinate formulation Nonlinear Dyn. 5 109 130
    • (2006) Nonlinear Dyn. , vol.5 , pp. 109-130
    • Gerstmayr, J.1    Shabana, A.A.2
  • 22
    • 50249124782 scopus 로고    scopus 로고
    • Slope discontinuities in the finite element absolute nodal coordinate formulation: Gradient deficient elements
    • A.A. Shabana L.G. Maqueda 2008 Slope discontinuities in the finite element absolute nodal coordinate formulation: gradient deficient elements Multibody Syst. Dyn. 20 239 249
    • (2008) Multibody Syst. Dyn. , vol.20 , pp. 239-249
    • Shabana, A.A.1    Maqueda, L.G.2
  • 23
    • 45849119062 scopus 로고    scopus 로고
    • A comparison of finite elements for nonlinear beams: The absolute nodal coordinate and geometrically exact formulations
    • I. Romero 2008 A comparison of finite elements for nonlinear beams: the absolute nodal coordinate and geometrically exact formulations Multibody Syst. Dyn. 20 51 68
    • (2008) Multibody Syst. Dyn. , vol.20 , pp. 51-68
    • Romero, I.1
  • 24
    • 40149111243 scopus 로고    scopus 로고
    • Three-dimensional formulation of rigid-flexible multibody systems with flexible beam elements
    • D. García-Vallejo J. Mayo J.L. Escalona J. Domínguez 2008 Three-dimensional formulation of rigid-flexible multibody systems with flexible beam elements Multibody Syst. Dyn. 20 1 28
    • (2008) Multibody Syst. Dyn. , vol.20 , pp. 1-28
    • García-Vallejo, D.1    Mayo, J.2    Escalona, J.L.3    Domínguez, J.4
  • 25
    • 28144435398 scopus 로고    scopus 로고
    • An internal damping model for the absolute nodal coordinate formulation
    • D. García-Vallejo J. Valverde J. Domínguez 2005 An internal damping model for the absolute nodal coordinate formulation Nonlinear Dyn. 42 347 369
    • (2005) Nonlinear Dyn. , vol.42 , pp. 347-369
    • García-Vallejo, D.1    Valverde, J.2    Domínguez, J.3
  • 27
    • 0035521694 scopus 로고    scopus 로고
    • FE formulation for the viscoelastic body modeled by fractional constitutive law
    • 4
    • W. Zhang N. Shimizu 2001 FE formulation for the viscoelastic body modeled by fractional constitutive law Acta Mech. Sin. 17 4 354 365
    • (2001) Acta Mech. Sin. , vol.17 , pp. 354-365
    • Zhang, W.1    Shimizu, N.2
  • 28
    • 0035821826 scopus 로고    scopus 로고
    • A two-dimensional shear deformable beam for large rotation and deformation problems
    • 3
    • A. Omar A.A. Shabana 2001 A two-dimensional shear deformable beam for large rotation and deformation problems J. Sound Vib. 243 3 565 576
    • (2001) J. Sound Vib. , vol.243 , pp. 565-576
    • Omar, A.1    Shabana, A.A.2
  • 29
    • 3543150073 scopus 로고    scopus 로고
    • Efficient evaluation of the elastic forces and the Jacobian in the absolute nodal coordinate formulation
    • D. García-Vallejo J. Mayo J.L. Escalona 2004 Efficient evaluation of the elastic forces and the Jacobian in the absolute nodal coordinate formulation Nonlinear Dyn. 35 313 329
    • (2004) Nonlinear Dyn. , vol.35 , pp. 313-329
    • García-Vallejo, D.1    Mayo, J.2    Escalona, J.L.3
  • 32
    • 0031674066 scopus 로고    scopus 로고
    • Complex-time-step Newmark methods with controllable numerical dissipation
    • T.C. Fung 1998 Complex-time-step Newmark methods with controllable numerical dissipation Int. J. Numer. Methods Eng. 41 65 93
    • (1998) Int. J. Numer. Methods Eng. , vol.41 , pp. 65-93
    • Fung, T.C.1
  • 33
    • 52549126470 scopus 로고    scopus 로고
    • A geometrically exact beam element based on the absolute nodal coordinate formulation
    • J. Gerstmayr M.K. Matikainen A.M. Mikkola 2008 A geometrically exact beam element based on the absolute nodal coordinate formulation Multibody Syst. Dyn. 20 287 306
    • (2008) Multibody Syst. Dyn. , vol.20 , pp. 287-306
    • Gerstmayr, J.1    Matikainen, M.K.2    Mikkola, A.M.3
  • 35
    • 34248386510 scopus 로고    scopus 로고
    • On an implementation of the Hilber-Hughes-Taylor method in the context of index 3 differential-algebraic equations of multibody dynamics
    • 1
    • D. Negrut R. Rampalli G. Ottarsson A. Sajdak 2007 On an implementation of the Hilber-Hughes-Taylor method in the context of index 3 differential- algebraic equations of multibody dynamics ASME J. Comput. Nonlinear Dyn. 2 1 73 85
    • (2007) ASME J. Comput. Nonlinear Dyn. , vol.2 , pp. 73-85
    • Negrut, D.1    Rampalli, R.2    Ottarsson, G.3    Sajdak, A.4
  • 36
    • 54949105097 scopus 로고    scopus 로고
    • Implicit and explicit integration in the solution of the absolute nodal coordinate differential/algebraic equations
    • B. Hussein D. Negrut A.A. Shabana 2008 Implicit and explicit integration in the solution of the absolute nodal coordinate differential/algebraic equations Nonlinear Dyn. 54 283 296
    • (2008) Nonlinear Dyn. , vol.54 , pp. 283-296
    • Hussein, B.1    Negrut, D.2    Shabana, A.A.3
  • 37
    • 34948869264 scopus 로고    scopus 로고
    • Poisson modes and general nonlinear constitutive models in the large displacement analysis of beams
    • L.G. Maqueda A.A. Shabana 2007 Poisson modes and general nonlinear constitutive models in the large displacement analysis of beams Multibody Syst. Dyn. 18 375 396
    • (2007) Multibody Syst. Dyn. , vol.18 , pp. 375-396
    • Maqueda, L.G.1    Shabana, A.A.2
  • 38
    • 1442283386 scopus 로고    scopus 로고
    • Description of elastic forces in absolute nodal coordinate formulation
    • J.T. Sopanen A.M. Mikkola 2003 Description of elastic forces in absolute nodal coordinate formulation Nonlinear Dyn. 34 53 74
    • (2003) Nonlinear Dyn. , vol.34 , pp. 53-74
    • Sopanen, J.T.1    Mikkola, A.M.2
  • 39
    • 34548293312 scopus 로고    scopus 로고
    • A new locking-free shear deformable finite element based on absolute nodal coordinates
    • D. García-Vallejo A.M. Mikkola J.L. Escalona 2007 A new locking-free shear deformable finite element based on absolute nodal coordinates Nonlinear Dyn. 50 249 264
    • (2007) Nonlinear Dyn. , vol.50 , pp. 249-264
    • García-Vallejo, D.1    Mikkola, A.M.2    Escalona, J.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.