메뉴 건너뛰기




Volumn , Issue , 2007, Pages 210-212

Reducing the complexity of multiagent reinforcement learning

Author keywords

Initialization; Multiagent learning; Q learning; Stochastic games

Indexed keywords

CO-OPERATIVE ROBOTICS; INITIALIZATION; LEARNING COMPLEXITY; MULTI AGENTS; MULTI-AGENT REINFORCEMENT LEARNING; MULTIAGENT LEARNING; Q-LEARNING; Q-VALUES; REINFORCEMENT LEARNING ALGORITHMS; SINGLE AGENTS; STOCHASTIC GAMES;

EID: 60349127987     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1329125.1329178     Document Type: Conference Paper
Times cited : (4)

References (3)
  • 1
    • 34548132482 scopus 로고    scopus 로고
    • Apprentissage de la coordination multiagent : Une méthode basée sur le Q-learning par jeu adaptatif.
    • O. Gies and B. Chaib-draa. Apprentissage de la coordination multiagent : une méthode basée sur le Q-learning par jeu adaptatif. Revue d'Intelligence Artificielle, 20(2-3):385-412, 2006.
    • (2006) Revue d'Intelligence Artificielle , vol.20 , Issue.2-3 , pp. 385-412
    • Gies, O.1    Chaib-draa, B.2
  • 2
    • 0029751419 scopus 로고    scopus 로고
    • The effect of representation and knowledge on goal-directed exploration with reinforcement-learning algorithms
    • S. Koenig and R. G. Simmons. The effect of representation and knowledge on goal-directed exploration with reinforcement-learning algorithms. Machine Learning, 22:227-250, 1996.
    • (1996) Machine Learning , vol.22 , pp. 227-250
    • Koenig, S.1    Simmons, R.G.2
  • 3
    • 0001944917 scopus 로고
    • The evolution of conventions
    • H. Young. The evolution of conventions. Econometrica, 61(1):57-84, 1993.
    • (1993) Econometrica , vol.61 , Issue.1 , pp. 57-84
    • Young, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.